Annealing-Driven Morphological Evolution of MoS2@α-MoO3 Heterostructures Toward Enhanced Catalysis and Na-Ion Supercapatteries.

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-09-18 DOI:10.1002/cssc.202500840
Fatemeh Ghamari, Jalal Arjomandi, Mohammad Ali Kiani, Yawei Li
{"title":"Annealing-Driven Morphological Evolution of MoS<sub>2</sub>@α-MoO<sub>3</sub> Heterostructures Toward Enhanced Catalysis and Na-Ion Supercapatteries.","authors":"Fatemeh Ghamari, Jalal Arjomandi, Mohammad Ali Kiani, Yawei Li","doi":"10.1002/cssc.202500840","DOIUrl":null,"url":null,"abstract":"<p><p>This study offers a cost-effective and high-yield electrochemical route for synthesizing molybdenum nanocomposites for energy storage and conversion. MoS<sub>2</sub>@α-MoO<sub>3</sub> heterostructure nanomaterials are synthesized using an affordable electrosynthesis method on graphite substrate, followed by a simple annealing process at different temperatures. Then, graphite/MoS<sub>2</sub>-amorphous electrodes are annealed at 30 °C, 40 °C, and 50 °C. Following physicochemical characterizations, statistical and morphological analyses, including monofractal and multifractal formalisms are conducted. Findings indicate increasing annealing temperature enhances surface roughness and irregularity with well-developed surface morphology. In a redox-additive electrolyte (1.0 M Na<sub>2</sub>SO<sub>4</sub> + 1.0 M NaI), G/MoS<sub>2</sub>@α-MoO<sub>3</sub>-500||G/rGO Na-ion asymmetric supercapattery and G/MoS<sub>2</sub>@α-MoO<sub>3</sub>-500||G/MoS<sub>2</sub>@α-MoO<sub>3</sub>-500 Na-ion symmetric supercapattery are fabricated. The G/MoS<sub>2</sub>@α-MoO<sub>3</sub>-500||G/rGO supplies a specific capacity of 191.79 mAh g<sup>-1</sup>, 45.01 Wh kg<sup>-1</sup> energy density, and 234.72 W kg<sup>-1</sup> power density at 1 A g<sup>-1</sup> with 95.4% retention after 10 000 cycles with a broad potential window of 1.30 V. The G/MoS<sub>2</sub>@α-MoO<sub>3</sub>-500||G/MoS<sub>2</sub>@α-MoO<sub>3</sub>-500 demonstrates C<sub>S</sub> of 207.13 mAh g<sup>-1</sup>, E<sub>s</sub> of 48.62 Wh kg<sup>-1</sup>, and P<sub>s</sub> of 234.72 W kg<sup>-1</sup> at 1 A g<sup>-1</sup> with 96.4% retention after 10 000 cycles. Tailoring developed morphologies at G/MoS<sub>2</sub>@α-MoO<sub>3</sub>-500 electrode yields catalytically active sites for excellent electrocatalytic activities toward hydrogen evolution reaction (η<sub>j = 10</sub> = 44 mV and Tafel slope of 81 mV dec<sup>-1</sup>) in acidic solution.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202500840"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500840","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study offers a cost-effective and high-yield electrochemical route for synthesizing molybdenum nanocomposites for energy storage and conversion. MoS2@α-MoO3 heterostructure nanomaterials are synthesized using an affordable electrosynthesis method on graphite substrate, followed by a simple annealing process at different temperatures. Then, graphite/MoS2-amorphous electrodes are annealed at 30 °C, 40 °C, and 50 °C. Following physicochemical characterizations, statistical and morphological analyses, including monofractal and multifractal formalisms are conducted. Findings indicate increasing annealing temperature enhances surface roughness and irregularity with well-developed surface morphology. In a redox-additive electrolyte (1.0 M Na2SO4 + 1.0 M NaI), G/MoS2@α-MoO3-500||G/rGO Na-ion asymmetric supercapattery and G/MoS2@α-MoO3-500||G/MoS2@α-MoO3-500 Na-ion symmetric supercapattery are fabricated. The G/MoS2@α-MoO3-500||G/rGO supplies a specific capacity of 191.79 mAh g-1, 45.01 Wh kg-1 energy density, and 234.72 W kg-1 power density at 1 A g-1 with 95.4% retention after 10 000 cycles with a broad potential window of 1.30 V. The G/MoS2@α-MoO3-500||G/MoS2@α-MoO3-500 demonstrates CS of 207.13 mAh g-1, Es of 48.62 Wh kg-1, and Ps of 234.72 W kg-1 at 1 A g-1 with 96.4% retention after 10 000 cycles. Tailoring developed morphologies at G/MoS2@α-MoO3-500 electrode yields catalytically active sites for excellent electrocatalytic activities toward hydrogen evolution reaction (ηj = 10 = 44 mV and Tafel slope of 81 mV dec-1) in acidic solution.

退火驱动的MoS2@α-MoO3异质结构向增强催化和na离子超级电容器的形态演变。
本研究为合成用于能量存储和转换的钼纳米复合材料提供了一条经济高效的电化学途径。采用经济实惠的电合成方法在石墨衬底上合成了MoS2@α-MoO3异质结构纳米材料,并在不同温度下进行了简单的退火处理。然后,石墨/二硫化钼非晶电极在30°C、40°C和50°C退火。在物理化学表征之后,进行了统计和形态学分析,包括单分形和多重分形形式。结果表明,随着退火温度的升高,表面粗糙度和不规则性增强,表面形貌发育良好。在氧化还原添加剂电解质(1.0 M Na2SO4 + 1.0 M NaI)中,制备了G/MoS2@α-MoO3-500||G/rGO钠离子不对称超级电容器和G/MoS2@α-MoO3-500||G/MoS2@α-MoO3-500钠离子对称超级电容器。G/MoS2@α-MoO3-500||G/rGO在1 a G -1下的比容量为191.79 mAh G -1,能量密度为45.01 Wh kg-1,功率密度为234.72 W kg-1,循环10000次后保持率为95.4%,电位窗口宽为1.30 V。G/MoS2@α-MoO3-500 G/MoS2@α-MoO3-500在1 A G -1下的CS为207.13 mAh G -1, Es为48.62 Wh kg-1, Ps为234.72 W kg-1,循环10000次后保留率为96.4%。在酸性溶液中,G/MoS2@α-MoO3-500电极上发展的不同形态产生了催化活性位点,对析氢反应具有优异的电催化活性(ηj = 10 = 44 mV, Tafel斜率为81 mV dec1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信