Fatemeh Ghamari, Jalal Arjomandi, Mohammad Ali Kiani, Yawei Li
{"title":"Annealing-Driven Morphological Evolution of MoS<sub>2</sub>@α-MoO<sub>3</sub> Heterostructures Toward Enhanced Catalysis and Na-Ion Supercapatteries.","authors":"Fatemeh Ghamari, Jalal Arjomandi, Mohammad Ali Kiani, Yawei Li","doi":"10.1002/cssc.202500840","DOIUrl":null,"url":null,"abstract":"<p><p>This study offers a cost-effective and high-yield electrochemical route for synthesizing molybdenum nanocomposites for energy storage and conversion. MoS<sub>2</sub>@α-MoO<sub>3</sub> heterostructure nanomaterials are synthesized using an affordable electrosynthesis method on graphite substrate, followed by a simple annealing process at different temperatures. Then, graphite/MoS<sub>2</sub>-amorphous electrodes are annealed at 30 °C, 40 °C, and 50 °C. Following physicochemical characterizations, statistical and morphological analyses, including monofractal and multifractal formalisms are conducted. Findings indicate increasing annealing temperature enhances surface roughness and irregularity with well-developed surface morphology. In a redox-additive electrolyte (1.0 M Na<sub>2</sub>SO<sub>4</sub> + 1.0 M NaI), G/MoS<sub>2</sub>@α-MoO<sub>3</sub>-500||G/rGO Na-ion asymmetric supercapattery and G/MoS<sub>2</sub>@α-MoO<sub>3</sub>-500||G/MoS<sub>2</sub>@α-MoO<sub>3</sub>-500 Na-ion symmetric supercapattery are fabricated. The G/MoS<sub>2</sub>@α-MoO<sub>3</sub>-500||G/rGO supplies a specific capacity of 191.79 mAh g<sup>-1</sup>, 45.01 Wh kg<sup>-1</sup> energy density, and 234.72 W kg<sup>-1</sup> power density at 1 A g<sup>-1</sup> with 95.4% retention after 10 000 cycles with a broad potential window of 1.30 V. The G/MoS<sub>2</sub>@α-MoO<sub>3</sub>-500||G/MoS<sub>2</sub>@α-MoO<sub>3</sub>-500 demonstrates C<sub>S</sub> of 207.13 mAh g<sup>-1</sup>, E<sub>s</sub> of 48.62 Wh kg<sup>-1</sup>, and P<sub>s</sub> of 234.72 W kg<sup>-1</sup> at 1 A g<sup>-1</sup> with 96.4% retention after 10 000 cycles. Tailoring developed morphologies at G/MoS<sub>2</sub>@α-MoO<sub>3</sub>-500 electrode yields catalytically active sites for excellent electrocatalytic activities toward hydrogen evolution reaction (η<sub>j = 10</sub> = 44 mV and Tafel slope of 81 mV dec<sup>-1</sup>) in acidic solution.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202500840"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202500840","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study offers a cost-effective and high-yield electrochemical route for synthesizing molybdenum nanocomposites for energy storage and conversion. MoS2@α-MoO3 heterostructure nanomaterials are synthesized using an affordable electrosynthesis method on graphite substrate, followed by a simple annealing process at different temperatures. Then, graphite/MoS2-amorphous electrodes are annealed at 30 °C, 40 °C, and 50 °C. Following physicochemical characterizations, statistical and morphological analyses, including monofractal and multifractal formalisms are conducted. Findings indicate increasing annealing temperature enhances surface roughness and irregularity with well-developed surface morphology. In a redox-additive electrolyte (1.0 M Na2SO4 + 1.0 M NaI), G/MoS2@α-MoO3-500||G/rGO Na-ion asymmetric supercapattery and G/MoS2@α-MoO3-500||G/MoS2@α-MoO3-500 Na-ion symmetric supercapattery are fabricated. The G/MoS2@α-MoO3-500||G/rGO supplies a specific capacity of 191.79 mAh g-1, 45.01 Wh kg-1 energy density, and 234.72 W kg-1 power density at 1 A g-1 with 95.4% retention after 10 000 cycles with a broad potential window of 1.30 V. The G/MoS2@α-MoO3-500||G/MoS2@α-MoO3-500 demonstrates CS of 207.13 mAh g-1, Es of 48.62 Wh kg-1, and Ps of 234.72 W kg-1 at 1 A g-1 with 96.4% retention after 10 000 cycles. Tailoring developed morphologies at G/MoS2@α-MoO3-500 electrode yields catalytically active sites for excellent electrocatalytic activities toward hydrogen evolution reaction (ηj = 10 = 44 mV and Tafel slope of 81 mV dec-1) in acidic solution.
本研究为合成用于能量存储和转换的钼纳米复合材料提供了一条经济高效的电化学途径。采用经济实惠的电合成方法在石墨衬底上合成了MoS2@α-MoO3异质结构纳米材料,并在不同温度下进行了简单的退火处理。然后,石墨/二硫化钼非晶电极在30°C、40°C和50°C退火。在物理化学表征之后,进行了统计和形态学分析,包括单分形和多重分形形式。结果表明,随着退火温度的升高,表面粗糙度和不规则性增强,表面形貌发育良好。在氧化还原添加剂电解质(1.0 M Na2SO4 + 1.0 M NaI)中,制备了G/MoS2@α-MoO3-500||G/rGO钠离子不对称超级电容器和G/MoS2@α-MoO3-500||G/MoS2@α-MoO3-500钠离子对称超级电容器。G/MoS2@α-MoO3-500||G/rGO在1 a G -1下的比容量为191.79 mAh G -1,能量密度为45.01 Wh kg-1,功率密度为234.72 W kg-1,循环10000次后保持率为95.4%,电位窗口宽为1.30 V。G/MoS2@α-MoO3-500 G/MoS2@α-MoO3-500在1 A G -1下的CS为207.13 mAh G -1, Es为48.62 Wh kg-1, Ps为234.72 W kg-1,循环10000次后保留率为96.4%。在酸性溶液中,G/MoS2@α-MoO3-500电极上发展的不同形态产生了催化活性位点,对析氢反应具有优异的电催化活性(ηj = 10 = 44 mV, Tafel斜率为81 mV dec1)。
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology