{"title":"Boosting Low-Temperature Ionic Conductivity in MOF-Based Solid-State Electrolytes via Tailored Fluoro-Ligand Incorporation Into Crystal Frameworks.","authors":"Lu Shi, Xin Wang, Zhiliang Liu","doi":"10.1002/smtd.202501464","DOIUrl":null,"url":null,"abstract":"<p><p>The stable operation of solid-state electrolytes (SSEs) at low temperature is critical for expanding the application of solid-state lithium batteries (SSLBs) in cold climates. However, there are few relevant literature reports. Herein, a breakthrough is realized to directly address this challenge through tailored fluoro-ligand incorporation into the crystal framework of MOF-808. A series of fluorinated MOF-808 (MOF-808-хF, x = 3, 5, 7) are rationally constructed with fluorinated carboxylic acid of different chain lengths through fluorination engineering at the molecular level to precisely modulate the channels surface environment. Specifically, the chemical anchored F groups effectively promote the capture of anions and transport of Li<sup>+</sup>, while endowing the MOF-808 with excellent mechanical strength and flexibility, thereby improving the performances of SSEs in operation at low temperature. As a result, the optimized MOF-808-5F achieves remarkable ionic conductivity (1.25 × 10<sup>-4</sup> S cm<sup>-1</sup>), high Li<sup>+</sup> transference number (0.58) and wide electrochemical window (5.4 V) at -40 °C. Furthermore, fluorinated MOF-808 contributes to LiF solid electrolyte interphase (SEI) formation and effectively inhibits Li dendrites growth, enabling Li|MOF-808-5F|Li cell to realize a stable plating/stripping cycling over 1000 h at 0.2 mA cm<sup>-2</sup>. Such results provide an insight on the design of electrolytes for SSLBs operating under low temperatures.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e01464"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501464","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The stable operation of solid-state electrolytes (SSEs) at low temperature is critical for expanding the application of solid-state lithium batteries (SSLBs) in cold climates. However, there are few relevant literature reports. Herein, a breakthrough is realized to directly address this challenge through tailored fluoro-ligand incorporation into the crystal framework of MOF-808. A series of fluorinated MOF-808 (MOF-808-хF, x = 3, 5, 7) are rationally constructed with fluorinated carboxylic acid of different chain lengths through fluorination engineering at the molecular level to precisely modulate the channels surface environment. Specifically, the chemical anchored F groups effectively promote the capture of anions and transport of Li+, while endowing the MOF-808 with excellent mechanical strength and flexibility, thereby improving the performances of SSEs in operation at low temperature. As a result, the optimized MOF-808-5F achieves remarkable ionic conductivity (1.25 × 10-4 S cm-1), high Li+ transference number (0.58) and wide electrochemical window (5.4 V) at -40 °C. Furthermore, fluorinated MOF-808 contributes to LiF solid electrolyte interphase (SEI) formation and effectively inhibits Li dendrites growth, enabling Li|MOF-808-5F|Li cell to realize a stable plating/stripping cycling over 1000 h at 0.2 mA cm-2. Such results provide an insight on the design of electrolytes for SSLBs operating under low temperatures.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.