Single-Step Patterning of Biocompatible Neural Electrodes Using Black-Pt Functionalized Laser-Induced Graphene for in Vivo Electrophysiology.

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Giheon Kim, Yeonghwa Hong, Haeyun Lee, Minseok Kim, Jonghee Eun, Jimin Lee, Seungjun Lee, Namsun Chou, Hyogeun Shin
{"title":"Single-Step Patterning of Biocompatible Neural Electrodes Using Black-Pt Functionalized Laser-Induced Graphene for in Vivo Electrophysiology.","authors":"Giheon Kim, Yeonghwa Hong, Haeyun Lee, Minseok Kim, Jonghee Eun, Jimin Lee, Seungjun Lee, Namsun Chou, Hyogeun Shin","doi":"10.1002/smtd.202501384","DOIUrl":null,"url":null,"abstract":"<p><p>Neural electrodes are essential tools for monitoring electrophysiological activity in the brain, driving advances in neuroscience and neurotechnology. However, conventional semiconductor-based fabrication techniques suffer from high costs, complex procedures, and limited adaptability for customized designs. Here, a single-step patterning, scalable method is presented for fabricating biocompatible neural electrodes using laser-induced graphene (LIG) patterned directly onto polyimide substrates. This process requires only a standard CO<sub>2</sub> laser system, a spray-coated biocompatible lubricant, and black-Platinum (Pt) functionalization to form conductive traces, electrode sites, and connector pads-eliminating the need for cleanroom infrastructure or photolithography. Selective laser ablation enables precise electrode exposure, allowing rapid prototyping across various formats, including electroencephalography (EEG), electrocorticography (ECoG), and penetrating neural probes. The entire fabrication process is completed within 5 h, reducing production time and cost by over two orders of magnitude compared to conventional approaches. Demonstrating mechanical robustness, reliable signal acquisition, and biocompatibility, the fabricated electrodes exhibit high fidelity in recording EEG, ECoG, and spike signals in anesthetized mice. These findings underscore the method's strong potential for rapid prototyping of personalized brain-computer interfaces, neurological monitoring systems, and scalable preclinical research tools.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e01384"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501384","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Neural electrodes are essential tools for monitoring electrophysiological activity in the brain, driving advances in neuroscience and neurotechnology. However, conventional semiconductor-based fabrication techniques suffer from high costs, complex procedures, and limited adaptability for customized designs. Here, a single-step patterning, scalable method is presented for fabricating biocompatible neural electrodes using laser-induced graphene (LIG) patterned directly onto polyimide substrates. This process requires only a standard CO2 laser system, a spray-coated biocompatible lubricant, and black-Platinum (Pt) functionalization to form conductive traces, electrode sites, and connector pads-eliminating the need for cleanroom infrastructure or photolithography. Selective laser ablation enables precise electrode exposure, allowing rapid prototyping across various formats, including electroencephalography (EEG), electrocorticography (ECoG), and penetrating neural probes. The entire fabrication process is completed within 5 h, reducing production time and cost by over two orders of magnitude compared to conventional approaches. Demonstrating mechanical robustness, reliable signal acquisition, and biocompatibility, the fabricated electrodes exhibit high fidelity in recording EEG, ECoG, and spike signals in anesthetized mice. These findings underscore the method's strong potential for rapid prototyping of personalized brain-computer interfaces, neurological monitoring systems, and scalable preclinical research tools.

利用黑铂功能化激光诱导石墨烯制备生物相容神经电极的单步模式。
神经电极是监测大脑电生理活动的重要工具,推动了神经科学和神经技术的进步。然而,传统的基于半导体的制造技术存在成本高、程序复杂、定制设计适应性有限等问题。在这里,提出了一种单步图图化,可扩展的方法,用于使用激光诱导石墨烯(LIG)直接在聚酰亚胺衬底上制作生物相容性神经电极。该工艺只需要一个标准的CO2激光系统,喷涂生物相容性润滑剂和黑铂(Pt)功能化来形成导电痕迹,电极位置和连接器垫,从而消除了对洁净室基础设施或光刻的需求。选择性激光消融可以实现精确的电极暴露,允许各种格式的快速原型,包括脑电图(EEG),皮质电图(ECoG)和穿透神经探针。整个制造过程在5小时内完成,与传统方法相比,将生产时间和成本降低了两个数量级以上。该电极具有机械稳健性、可靠的信号采集和生物相容性,在麻醉小鼠的脑电图、脑电图和脉冲信号记录中表现出高保真度。这些发现强调了该方法在个性化脑机接口、神经监测系统和可扩展的临床前研究工具的快速原型制作方面的强大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信