Deformation Mechanism of Indium Phosphide Wafers by Spherical Indenter Radius in Nanoindentation Based on Molecular Dynamics Simulation

IF 2.3 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
JOM Pub Date : 2025-08-28 DOI:10.1007/s11837-025-07607-5
Zilei Bai, Jiayun Deng, Xiaoning Wen, Jiacheng Geng, Hua Wei, Feng Hui, Feng Qiu
{"title":"Deformation Mechanism of Indium Phosphide Wafers by Spherical Indenter Radius in Nanoindentation Based on Molecular Dynamics Simulation","authors":"Zilei Bai,&nbsp;Jiayun Deng,&nbsp;Xiaoning Wen,&nbsp;Jiacheng Geng,&nbsp;Hua Wei,&nbsp;Feng Hui,&nbsp;Feng Qiu","doi":"10.1007/s11837-025-07607-5","DOIUrl":null,"url":null,"abstract":"<div><p>Using the LAMMPS software, a nanoindentation model was developed via molecular dynamics (MD) to investigate the deformation behaviour of single-crystal zinc blende-structured indium phosphide (B3-InP) wafers along the [001] crystal orientation. The study examined the indentation process with different spherical indenter radii (45 Å, 50 Å, 55 Å, 60 Å). It analysed the effect of the indenter radius on dislocation propagation, atomic displacement, shear strain and phase transformation in B3-InP wafers during nanoindentation. The results show that the plastic deformation of B3-InP wafers is attributed to the dislocation propagation, phase transition and amorphous phase transition. The critical load for the elastic-plastic transition increased with increasing indenter radius. Almost all dislocations in the indentation process were 1/6&lt;112&gt; Shockley incomplete dislocations, 1/2&lt;110&gt; perfect dislocations and some unrecognisable dislocation types. The magnitude and range of atomic displacements and shear strain distribution increased with increasing indenter radius, which promotes the dislocation nucleation and propagation in the slip system and exacerbates the plastic deformation of B3-InP wafers. Increasing the indenter radius also promotes the phase transition of B3-InP wafers to lead-zinicite structure indium phosphide (B1-InP) wafers and enhances the amorphisation of B3-InP in the deformation layer. These results provide significant insights into the mechanical behaviour of B3-InP, particularly its response to nanoindentation, thereby contributing valuable knowledge for applications involving the precision machining of semiconductor materials.</p></div>","PeriodicalId":605,"journal":{"name":"JOM","volume":"77 10","pages":"7287 - 7299"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOM","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11837-025-07607-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Using the LAMMPS software, a nanoindentation model was developed via molecular dynamics (MD) to investigate the deformation behaviour of single-crystal zinc blende-structured indium phosphide (B3-InP) wafers along the [001] crystal orientation. The study examined the indentation process with different spherical indenter radii (45 Å, 50 Å, 55 Å, 60 Å). It analysed the effect of the indenter radius on dislocation propagation, atomic displacement, shear strain and phase transformation in B3-InP wafers during nanoindentation. The results show that the plastic deformation of B3-InP wafers is attributed to the dislocation propagation, phase transition and amorphous phase transition. The critical load for the elastic-plastic transition increased with increasing indenter radius. Almost all dislocations in the indentation process were 1/6<112> Shockley incomplete dislocations, 1/2<110> perfect dislocations and some unrecognisable dislocation types. The magnitude and range of atomic displacements and shear strain distribution increased with increasing indenter radius, which promotes the dislocation nucleation and propagation in the slip system and exacerbates the plastic deformation of B3-InP wafers. Increasing the indenter radius also promotes the phase transition of B3-InP wafers to lead-zinicite structure indium phosphide (B1-InP) wafers and enhances the amorphisation of B3-InP in the deformation layer. These results provide significant insights into the mechanical behaviour of B3-InP, particularly its response to nanoindentation, thereby contributing valuable knowledge for applications involving the precision machining of semiconductor materials.

基于分子动力学模拟的纳米压痕中球形压头半径对磷化铟晶片变形机理的影响
利用LAMMPS软件,通过分子动力学(MD)建立了纳米压痕模型,研究了单晶锌混合结构磷化铟(B3-InP)晶圆沿[001]晶向的变形行为。研究了不同球形压头半径(45 Å, 50 Å, 55 Å, 60 Å)下的压痕过程。分析了压痕半径对B3-InP晶圆纳米压痕过程中位错扩展、原子位移、剪切应变和相变的影响。结果表明:B3-InP晶圆的塑性变形主要是位错扩展、相变和非晶相变引起的。弹塑性过渡临界载荷随压头半径的增大而增大。压痕过程中几乎所有的位错都是1/6<;112>; Shockley不完全位错、1/2<;110>;完全位错和一些无法识别的位错类型。随着压头半径的增大,原子位移和剪切应变分布的幅度和范围增大,促进了位错在滑移体系中的形核和扩展,加剧了B3-InP晶圆的塑性变形。增大压头半径也促进了B3-InP晶圆向铅锌矿结构磷化铟晶圆的相变,增强了变形层中B3-InP的非晶化。这些结果为B3-InP的机械行为,特别是其对纳米压痕的响应提供了重要的见解,从而为涉及半导体材料精密加工的应用提供了宝贵的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JOM
JOM 工程技术-材料科学:综合
CiteScore
4.50
自引率
3.80%
发文量
540
审稿时长
2.8 months
期刊介绍: JOM is a technical journal devoted to exploring the many aspects of materials science and engineering. JOM reports scholarly work that explores the state-of-the-art processing, fabrication, design, and application of metals, ceramics, plastics, composites, and other materials. In pursuing this goal, JOM strives to balance the interests of the laboratory and the marketplace by reporting academic, industrial, and government-sponsored work from around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信