Finite Element Modeling and Analysis of Ceramic Particle/Substrate Interface Fracture Evolution and Particle Retention at Varying Impact Velocities in Cold Spray

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS
Arif Alam, Philip A. S. Gores, Aisa Grace D. Custodio, Aleksandra Nastic, Jagannadh V. S. N. Sripada, Clodualdo Aranas Jr., Gobinda C. Saha
{"title":"Finite Element Modeling and Analysis of Ceramic Particle/Substrate Interface Fracture Evolution and Particle Retention at Varying Impact Velocities in Cold Spray","authors":"Arif Alam,&nbsp;Philip A. S. Gores,&nbsp;Aisa Grace D. Custodio,&nbsp;Aleksandra Nastic,&nbsp;Jagannadh V. S. N. Sripada,&nbsp;Clodualdo Aranas Jr.,&nbsp;Gobinda C. Saha","doi":"10.1007/s11666-025-02015-2","DOIUrl":null,"url":null,"abstract":"<div><p>A finite element (FE) model of a 25-µm Al<sub>2</sub>O<sub>3</sub> particle impacting an AISI 1018 steel surface is constructed using the Johnson–Holmquist-2 and Johnson–Cook material definition models, respectively. Particle impact velocities in the range of 200–700 m/sec, obtained using a deLaval nozzle, are considered. Energy, temperature, and strain evolutions over time for varying impact velocities are reported, along with penetration depth into target material. Penetration results are validated against experiments, showing good agreement, with observed depths between 4.8 and 8.2 µm. Penetration, contact pressure, and contact time for varying impact velocities are predicted, along with their effects on the interfacial bonding mechanism between particle and substrate. The threshold velocity for Al<sub>2</sub>O<sub>3</sub> particle fragmentation is estimated at 170 m/sec. The stress behavior and the location of failure onset within the particle are predicted and described. The damage and fragmentation behavior of Al<sub>2</sub>O<sub>2</sub> particles of different sizes is also analyzed. The implications of obtained results for cold spray deposition of metal matrix composite material are discussed.</p></div>","PeriodicalId":679,"journal":{"name":"Journal of Thermal Spray Technology","volume":"34 6","pages":"2190 - 2210"},"PeriodicalIF":3.3000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Spray Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11666-025-02015-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

A finite element (FE) model of a 25-µm Al2O3 particle impacting an AISI 1018 steel surface is constructed using the Johnson–Holmquist-2 and Johnson–Cook material definition models, respectively. Particle impact velocities in the range of 200–700 m/sec, obtained using a deLaval nozzle, are considered. Energy, temperature, and strain evolutions over time for varying impact velocities are reported, along with penetration depth into target material. Penetration results are validated against experiments, showing good agreement, with observed depths between 4.8 and 8.2 µm. Penetration, contact pressure, and contact time for varying impact velocities are predicted, along with their effects on the interfacial bonding mechanism between particle and substrate. The threshold velocity for Al2O3 particle fragmentation is estimated at 170 m/sec. The stress behavior and the location of failure onset within the particle are predicted and described. The damage and fragmentation behavior of Al2O2 particles of different sizes is also analyzed. The implications of obtained results for cold spray deposition of metal matrix composite material are discussed.

Abstract Image

Abstract Image

冷喷涂中不同冲击速度下陶瓷颗粒/基体界面断裂演化及颗粒保留的有限元建模与分析
采用Johnson-Holmquist-2和Johnson-Cook材料定义模型分别建立了25µm Al2O3颗粒撞击AISI 1018钢表面的有限元模型。考虑了使用deLaval喷嘴获得的200-700米/秒范围内的粒子冲击速度。报告了能量、温度和应变随时间变化的冲击速度,以及对目标材料的穿透深度。穿透结果与实验结果一致,观察深度在4.8 ~ 8.2µm之间。预测了不同冲击速度下的渗透、接触压力和接触时间,以及它们对颗粒与基体之间界面结合机制的影响。Al2O3颗粒破碎的阈值速度估计为170 m/s。预测和描述了颗粒内的应力行为和破坏发生的位置。分析了不同尺寸Al2O2颗粒的损伤和破碎行为。讨论了所得结果对金属基复合材料冷喷涂沉积的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Thermal Spray Technology
Journal of Thermal Spray Technology 工程技术-材料科学:膜
CiteScore
5.20
自引率
25.80%
发文量
198
审稿时长
2.6 months
期刊介绍: From the scientific to the practical, stay on top of advances in this fast-growing coating technology with ASM International''s Journal of Thermal Spray Technology. Critically reviewed scientific papers and engineering articles combine the best of new research with the latest applications and problem solving. A service of the ASM Thermal Spray Society (TSS), the Journal of Thermal Spray Technology covers all fundamental and practical aspects of thermal spray science, including processes, feedstock manufacture, and testing and characterization. The journal contains worldwide coverage of the latest research, products, equipment and process developments, and includes technical note case studies from real-time applications and in-depth topical reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信