KAN Policy: Learning Efficient and Smooth Robotic Trajectories via Kolmogorov-Arnold Networks

IF 5.3 2区 计算机科学 Q2 ROBOTICS
Zikang Chen;Fei Gao;Ziya Yu;Peng Li
{"title":"KAN Policy: Learning Efficient and Smooth Robotic Trajectories via Kolmogorov-Arnold Networks","authors":"Zikang Chen;Fei Gao;Ziya Yu;Peng Li","doi":"10.1109/LRA.2025.3606354","DOIUrl":null,"url":null,"abstract":"Modernrobotic visuomotor policy learning has witnessed significant progress through Diffusion Policy (DP) frameworks built upon <italic>Convolutional Neural Networks</i> (CNNs) and Transformers. Despite their empirical success, these architectures remain fundamentally constrained by their relatively discrete computational nature, inherently limiting their capacity to generate efficient and smooth motion trajectories. To address this challenge, we introduce <italic>Kolmogorov-Arnold Networks</i> (KANs) into Diffusion Policy learning. The proposed <italic>KAN Policy</i> (KP) leverages KANs' intrinsic continuity through learnable base-parameterized activation functions, thereby producing continuous trajectories with shorter execution time and fewer jerks. Specifically, we design a novel <italic>Embedding KAN</i> (Emb-KAN) for CNN-based models, which preserves structural continuity in high-dimensional latent spaces through adaptive spline embeddings. Besides, we apply Group-KAN to Transformer-based models for learning continuous representations. Across main simulation experiments, KP achieves average improvements of 6.06%, 8.03%, and 26.4% in terms of success rate, execution time, and smoothness, respectively. Similarly, in real-world experiments, KP achieves average improvements of 53.8%, 7.89%, and 29.4% across the same metrics.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 11","pages":"11164-11171"},"PeriodicalIF":5.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11151197/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Modernrobotic visuomotor policy learning has witnessed significant progress through Diffusion Policy (DP) frameworks built upon Convolutional Neural Networks (CNNs) and Transformers. Despite their empirical success, these architectures remain fundamentally constrained by their relatively discrete computational nature, inherently limiting their capacity to generate efficient and smooth motion trajectories. To address this challenge, we introduce Kolmogorov-Arnold Networks (KANs) into Diffusion Policy learning. The proposed KAN Policy (KP) leverages KANs' intrinsic continuity through learnable base-parameterized activation functions, thereby producing continuous trajectories with shorter execution time and fewer jerks. Specifically, we design a novel Embedding KAN (Emb-KAN) for CNN-based models, which preserves structural continuity in high-dimensional latent spaces through adaptive spline embeddings. Besides, we apply Group-KAN to Transformer-based models for learning continuous representations. Across main simulation experiments, KP achieves average improvements of 6.06%, 8.03%, and 26.4% in terms of success rate, execution time, and smoothness, respectively. Similarly, in real-world experiments, KP achieves average improvements of 53.8%, 7.89%, and 29.4% across the same metrics.
KAN策略:基于Kolmogorov-Arnold网络的高效平滑机器人轨迹学习
通过基于卷积神经网络(cnn)和变压器的扩散策略(DP)框架,现代机器人视觉运动策略学习取得了重大进展。尽管这些架构在经验上取得了成功,但它们相对离散的计算特性仍然从根本上限制了它们生成高效和平滑运动轨迹的能力。为了解决这一挑战,我们将Kolmogorov-Arnold网络(KANs)引入扩散策略学习。提出的KAN策略(KP)通过可学习的基参数化激活函数利用KAN的内在连续性,从而产生具有更短执行时间和更少突发事件的连续轨迹。具体而言,我们为基于cnn的模型设计了一种新的嵌入KAN (Emb-KAN),该模型通过自适应样条嵌入来保持高维潜在空间中的结构连续性。此外,我们将Group-KAN应用于基于transformer的模型中以学习连续表示。在主要的仿真实验中,KP在成功率、执行时间和平滑度方面的平均提升分别为6.06%、8.03%和26.4%。同样,在现实世界的实验中,KP在相同的指标上实现了53.8%、7.89%和29.4%的平均改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信