Multi-Task Diffusion With Masked Measurements

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Mahdi Shamsi;Farokh Marvasti
{"title":"Multi-Task Diffusion With Masked Measurements","authors":"Mahdi Shamsi;Farokh Marvasti","doi":"10.1109/LSP.2025.3600370","DOIUrl":null,"url":null,"abstract":"This letter addresses the problem of clustered multitask distributed estimation under masked measurements, where network nodes observe partial or incomplete data due to sensing limitations, communication constraints, or privacy requirements. We propose a novel extension of the Diffusion LMS (DLMS) algorithm that incorporates node-specific masking and a task-clustered structure. A tailored network-wide optimization problem is formulated to jointly handle masked observations and inter-cluster multitask estimation. Convergence analysis and simulation results demonstrate the effectiveness and robustness of the proposed approach in improving estimation performance under partial observability.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"3490-3494"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11129205/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This letter addresses the problem of clustered multitask distributed estimation under masked measurements, where network nodes observe partial or incomplete data due to sensing limitations, communication constraints, or privacy requirements. We propose a novel extension of the Diffusion LMS (DLMS) algorithm that incorporates node-specific masking and a task-clustered structure. A tailored network-wide optimization problem is formulated to jointly handle masked observations and inter-cluster multitask estimation. Convergence analysis and simulation results demonstrate the effectiveness and robustness of the proposed approach in improving estimation performance under partial observability.
多任务扩散与屏蔽测量
这封信解决了在屏蔽测量下集群多任务分布式估计的问题,其中网络节点由于传感限制,通信约束或隐私要求而观察部分或不完整的数据。我们提出了一种新的扩展扩散LMS (DLMS)算法,该算法结合了节点特定掩蔽和任务聚类结构。制定了一个定制的全网优化问题,以联合处理掩模观测和集群间多任务估计。收敛性分析和仿真结果证明了该方法在部分可观测条件下提高估计性能的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信