Bidding Efficiently in Simultaneous Ascending Auctions With Incomplete Information Using Monte Carlo Tree Search and Determinization

IF 2.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Alexandre Pacaud;Aurelien Bechler;Marceau Coupechoux
{"title":"Bidding Efficiently in Simultaneous Ascending Auctions With Incomplete Information Using Monte Carlo Tree Search and Determinization","authors":"Alexandre Pacaud;Aurelien Bechler;Marceau Coupechoux","doi":"10.1109/TG.2025.3552025","DOIUrl":null,"url":null,"abstract":"In this article, we tackle the problem of designing an efficient bidding strategy for simultaneous ascending auctions (SAA). SAA is a well-known mechanism for allocating spectrum to mobile networks operators and has been used for example to allocate 5G licenses in many countries. Although the rules are relatively simple, there is no known optimal bidding strategy for SAA. In a previous work, we proposed a Simultaneous move Monte Carlo Tree Search-based algorithm named <inline-formula><tex-math>$SMS^{\\alpha }$</tex-math></inline-formula> that we extend here to an incomplete information framework. We consider and compare three determinization approaches of <inline-formula><tex-math>$SMS^{\\alpha }$</tex-math></inline-formula>, and show how they are able to tackle four key strategic issues of SAA, namely, the exposure problem, the own price effect, the budget constraints and the eligibility management. Extensive numerical experiments on instances of realistic size and including an uncertain framework show that our extensions of <inline-formula><tex-math>$SMS^{\\alpha }$</tex-math></inline-formula> outperform state-of-the-art algorithms by achieving higher expected utility while taking less risks.","PeriodicalId":55977,"journal":{"name":"IEEE Transactions on Games","volume":"17 3","pages":"813-826"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Games","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10930629/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we tackle the problem of designing an efficient bidding strategy for simultaneous ascending auctions (SAA). SAA is a well-known mechanism for allocating spectrum to mobile networks operators and has been used for example to allocate 5G licenses in many countries. Although the rules are relatively simple, there is no known optimal bidding strategy for SAA. In a previous work, we proposed a Simultaneous move Monte Carlo Tree Search-based algorithm named $SMS^{\alpha }$ that we extend here to an incomplete information framework. We consider and compare three determinization approaches of $SMS^{\alpha }$, and show how they are able to tackle four key strategic issues of SAA, namely, the exposure problem, the own price effect, the budget constraints and the eligibility management. Extensive numerical experiments on instances of realistic size and including an uncertain framework show that our extensions of $SMS^{\alpha }$ outperform state-of-the-art algorithms by achieving higher expected utility while taking less risks.
基于蒙特卡罗树搜索和确定的不完全信息同步升拍的高效竞价
在本文中,我们解决的问题是设计一个有效的竞价策略的同时上升拍卖(SAA)。SAA是一种众所周知的向移动网络运营商分配频谱的机制,在许多国家已被用于分配5G牌照。尽管规则相对简单,但对于SAA来说,并没有已知的最优竞标策略。在之前的工作中,我们提出了一种基于蒙特卡罗树搜索的同步移动算法,命名为$SMS^{\alpha}$,我们在这里将其扩展到一个不完全信息框架。本文考虑并比较了SMS^{\alpha}$的三种确定方法,并展示了它们如何能够解决SAA的四个关键战略问题,即暴露问题、自身价格效应、预算约束和合格性管理。在现实规模的实例上进行的大量数值实验,包括一个不确定的框架,表明我们的$SMS^{\alpha}$扩展通过在承担更少风险的同时实现更高的预期效用,优于最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Games
IEEE Transactions on Games Engineering-Electrical and Electronic Engineering
CiteScore
4.60
自引率
8.70%
发文量
87
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信