An Ultrawideband and Ultralow Scattering ITO Absorber Under Wide-Angle Incidences

IF 3.4 0 ENGINEERING, ELECTRICAL & ELECTRONIC
Qingqi He;Jianxun Su;Meijun Qu;Lan Lu;Hongcheng Yin
{"title":"An Ultrawideband and Ultralow Scattering ITO Absorber Under Wide-Angle Incidences","authors":"Qingqi He;Jianxun Su;Meijun Qu;Lan Lu;Hongcheng Yin","doi":"10.1109/LMWT.2025.3574000","DOIUrl":null,"url":null,"abstract":"This letter presents an ultrawideband, ultralow scattering, dual-polarized, and lightweight absorber under wide-angle incidences, which utilizes multilayer indium tin oxide (ITO) films. Based on the multimode resonance (MR) and ultra-wideband impedance matching (UWIM) absorption principles, ITO square ring patterns with different sizes are configured in a pyramid shape on eight layers of foam substrate. Under normal incidence, the absorption rates of transverse electric (TE) waves and transverse magnetic (TM) waves for the ITO absorber exceed 99% from 1.9 to 40.4 GHz [the fractional bandwidth (FBW) is 182.03%], covering the S, C, X, Ku, K and Ka microwave bands. Under oblique incidence covering a 60° range, the ITO absorber exhibits over 90% absorption for TE waves within 3.6–43.1 GHz (169.2%). Similarly, it demonstrates over 90% absorption for TM waves in 3.06–43 GHz (173.4%). To investigate the absorption mechanism of the ITO absorber, a detailed analysis of its surface current distribution and equivalent circuit model (ECM) is conducted. Finally, an ITO absorber prototype with dimensions of <inline-formula> <tex-math>$300\\times 300$ </tex-math></inline-formula> mm<sup>2</sup> is fabricated. The simulated and measured results are in good agreement.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 9","pages":"1324-1327"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11038746/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This letter presents an ultrawideband, ultralow scattering, dual-polarized, and lightweight absorber under wide-angle incidences, which utilizes multilayer indium tin oxide (ITO) films. Based on the multimode resonance (MR) and ultra-wideband impedance matching (UWIM) absorption principles, ITO square ring patterns with different sizes are configured in a pyramid shape on eight layers of foam substrate. Under normal incidence, the absorption rates of transverse electric (TE) waves and transverse magnetic (TM) waves for the ITO absorber exceed 99% from 1.9 to 40.4 GHz [the fractional bandwidth (FBW) is 182.03%], covering the S, C, X, Ku, K and Ka microwave bands. Under oblique incidence covering a 60° range, the ITO absorber exhibits over 90% absorption for TE waves within 3.6–43.1 GHz (169.2%). Similarly, it demonstrates over 90% absorption for TM waves in 3.06–43 GHz (173.4%). To investigate the absorption mechanism of the ITO absorber, a detailed analysis of its surface current distribution and equivalent circuit model (ECM) is conducted. Finally, an ITO absorber prototype with dimensions of $300\times 300$ mm2 is fabricated. The simulated and measured results are in good agreement.
广角入射下的超宽带超低散射ITO吸收体
本文介绍了一种利用多层氧化铟锡(ITO)薄膜的超宽带、超低散射、双极化和广角入射下的轻质吸收剂。基于多模共振(MR)和超宽带阻抗匹配(UWIM)吸收原理,在8层泡沫基板上配置了不同尺寸的ITO方环图案。在正入射下,ITO吸收体在1.9 ~ 40.4 GHz范围内(分数带宽为182.03%)对横向电(TE)波和横向磁(TM)波的吸收率超过99%,覆盖了S、C、X、Ku、K和Ka微波波段。在60°斜入射范围内,ITO吸收器对3.6-43.1 GHz范围内的TE波的吸收超过90%(169.2%)。同样,它对3.06-43 GHz的TM波的吸收率超过90%(173.4%)。为了研究ITO吸收体的吸收机理,对其表面电流分布和等效电路模型(ECM)进行了详细分析。最后,制作了尺寸为300 × 300 mm2的ITO吸收体原型。模拟结果与实测结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信