Synthesis of In-Line Fully Canonical Filters by Solving a Matrix Completion Problem Under AW Ladder Constraints

IF 3.4 0 ENGINEERING, ELECTRICAL & ELECTRONIC
Joel Mesas;Jordi Verdú;Pedro de Paco
{"title":"Synthesis of In-Line Fully Canonical Filters by Solving a Matrix Completion Problem Under AW Ladder Constraints","authors":"Joel Mesas;Jordi Verdú;Pedro de Paco","doi":"10.1109/LMWT.2025.3573897","DOIUrl":null,"url":null,"abstract":"This work extends a matrix-based numerical methodology to cover fully canonical generalized Chevyshev (GC) transfer functions by reconfiguring canonical filter topologies into dangling inline structures, with a direct impact on the consideration of ladder circuit filters. The transformation matrix that maps a canonical matrix to the dangling inline is defined in such a way that, within a mathematical matrix completion framework, it can nullify the source-load coupling, modify the source and load reactances to accommodate the phase at the first and last extracted-pole sections of the network, and capture the response information in a different size matrix.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 9","pages":"1272-1275"},"PeriodicalIF":3.4000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11030593","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11030593/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This work extends a matrix-based numerical methodology to cover fully canonical generalized Chevyshev (GC) transfer functions by reconfiguring canonical filter topologies into dangling inline structures, with a direct impact on the consideration of ladder circuit filters. The transformation matrix that maps a canonical matrix to the dangling inline is defined in such a way that, within a mathematical matrix completion framework, it can nullify the source-load coupling, modify the source and load reactances to accommodate the phase at the first and last extracted-pole sections of the network, and capture the response information in a different size matrix.
求解AW阶梯约束下矩阵补全问题的内联全正则滤波器综合
这项工作扩展了基于矩阵的数值方法,通过将规范滤波器拓扑重新配置为悬垂的内联结构,以覆盖完全规范的广义Chevyshev (GC)传递函数,并对阶梯电路滤波器的考虑产生直接影响。将规范矩阵映射到悬垂内联的转换矩阵以这样一种方式定义,即在数学矩阵完成框架内,它可以取消源-负载耦合,修改源和负载电抗以适应网络的第一个和最后一个提取极部分的相位,并在不同大小的矩阵中捕获响应信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信