{"title":"Effect of Oxygen-containing Functional Groups on the NO2 Adsorption and Reduction by Activated Carbon: A Density Functional Theory Calculation Study","authors":"Tong Hao, , , Qian Zhou, , , Jinyuan Jiang*, , , Mingyao Liu, , , Wei Tan, , , Haoyang Song, , , Lei He, , , Dongni Shi, , , Hongke Qin, , , Yajun Li, , and , XiaoJun Pan, ","doi":"10.1021/acs.langmuir.5c02885","DOIUrl":null,"url":null,"abstract":"<p >The activated carbon effectively removes nitrogen dioxide (NO<sub>2</sub>) gas from environmental air, and its adsorption-reduction performance is significantly influenced by surface oxygen-containing functional groups (OFGs). However, the internal mechanisms of different OFGs in the complete reaction processes remain unclear. Based on previous studies and experimental characterization results, this paper selects two typical carbon edge structure models and six different OFGs as fundamental models. Using density functional theory, wave function analysis, and thermodynamic and kinetic analyses, we comprehensively investigate the microscopic reaction pathways of the NO<sub>2</sub> molecule on carbon edge structures modified with OFGs. The results show that most OFGs inhibit NO<sub>2</sub> adsorption and N–O bond cleavage via van der Waals interactions, while their impact on NO desorption is negligible due to localized effects. Thermodynamic and kinetic analyses jointly validated these findings. Importantly, the results highlight that zigzag edge structures exhibit superior reactivity toward NO<sub>2</sub> reduction, suggesting that carbon materials prepared below 400 °C with minimal OFG incorporation are more favorable. This dual-optimization strategy provides practical guidance for enhancing the NO<sub>2</sub> conversion performance, offering a molecular-level foundation for the rational design of advanced carbon-based adsorbents or catalysts.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 38","pages":"26125–26139"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c02885","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The activated carbon effectively removes nitrogen dioxide (NO2) gas from environmental air, and its adsorption-reduction performance is significantly influenced by surface oxygen-containing functional groups (OFGs). However, the internal mechanisms of different OFGs in the complete reaction processes remain unclear. Based on previous studies and experimental characterization results, this paper selects two typical carbon edge structure models and six different OFGs as fundamental models. Using density functional theory, wave function analysis, and thermodynamic and kinetic analyses, we comprehensively investigate the microscopic reaction pathways of the NO2 molecule on carbon edge structures modified with OFGs. The results show that most OFGs inhibit NO2 adsorption and N–O bond cleavage via van der Waals interactions, while their impact on NO desorption is negligible due to localized effects. Thermodynamic and kinetic analyses jointly validated these findings. Importantly, the results highlight that zigzag edge structures exhibit superior reactivity toward NO2 reduction, suggesting that carbon materials prepared below 400 °C with minimal OFG incorporation are more favorable. This dual-optimization strategy provides practical guidance for enhancing the NO2 conversion performance, offering a molecular-level foundation for the rational design of advanced carbon-based adsorbents or catalysts.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).