Hongye Xu,Yunfeng Liang,Naipeng Zhao,Jiangtao Pang,Fulong Ning
{"title":"Molecular Dynamics Simulation of CO2 Molecular Behaviors in Silica Nanopores: Effect of Nanoscale Surface Roughness.","authors":"Hongye Xu,Yunfeng Liang,Naipeng Zhao,Jiangtao Pang,Fulong Ning","doi":"10.1021/acs.langmuir.5c02839","DOIUrl":null,"url":null,"abstract":"Nanoscale roughness of reservoir skeleton surfaces inevitably affects the CO2 geo-sequestration, and its exact microscopic mechanism remains elusive. Here, nanosecond molecular dynamics (MD) simulations were performed to investigate this effect with silica nanopore models. We classified the surface into \"nano-valleys\" and \"nano-peaks\" by the median z-coordinate of surface atoms and further divided nanovalleys into shallow and deep types. The results demonstrate that the nanovalleys can trap CO2 molecules, resulting in lower CO2 diffusivity and higher local concentration compared to nanopeaks. Generally, the total CO2 quantity on nanovalleys and nanopeaks is increasing as surface roughness increases. A further exploration shows that the CO2 concentration of the deep valley is always higher than that of the shallow valley under the same degree of roughness and exhibits an increasing trend as surface roughness increases. Furthermore, CO2 molecules enter nanovalleys vertically and adsorb parallel to the surface, while water molecules orient randomly. In a high CO2 concentration system, CO2 nanobubbles are observed in nanovalleys. The nanobubbles are smaller but more numerous as the surface roughness increases. In a dual-phase system, the boundary between CO2 and liquid phases connects the nanopeaks of top and bottom layers, embedding the CO2 phase in concaves, which indicates the restrictive effect of nanopores on the CO2 phase. These molecular insights confirm the accumulation and retention of prestored CO2 due to nanoscale roughness on the reservoir surface.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"74 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.5c02839","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoscale roughness of reservoir skeleton surfaces inevitably affects the CO2 geo-sequestration, and its exact microscopic mechanism remains elusive. Here, nanosecond molecular dynamics (MD) simulations were performed to investigate this effect with silica nanopore models. We classified the surface into "nano-valleys" and "nano-peaks" by the median z-coordinate of surface atoms and further divided nanovalleys into shallow and deep types. The results demonstrate that the nanovalleys can trap CO2 molecules, resulting in lower CO2 diffusivity and higher local concentration compared to nanopeaks. Generally, the total CO2 quantity on nanovalleys and nanopeaks is increasing as surface roughness increases. A further exploration shows that the CO2 concentration of the deep valley is always higher than that of the shallow valley under the same degree of roughness and exhibits an increasing trend as surface roughness increases. Furthermore, CO2 molecules enter nanovalleys vertically and adsorb parallel to the surface, while water molecules orient randomly. In a high CO2 concentration system, CO2 nanobubbles are observed in nanovalleys. The nanobubbles are smaller but more numerous as the surface roughness increases. In a dual-phase system, the boundary between CO2 and liquid phases connects the nanopeaks of top and bottom layers, embedding the CO2 phase in concaves, which indicates the restrictive effect of nanopores on the CO2 phase. These molecular insights confirm the accumulation and retention of prestored CO2 due to nanoscale roughness on the reservoir surface.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).