A neural network for estimating compact binary coalescence parameters of gravitational-wave events in real time

IF 3.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Sushant Sharma Chaudhary, Gianmarco Puleo and Marco Cavaglià
{"title":"A neural network for estimating compact binary coalescence parameters of gravitational-wave events in real time","authors":"Sushant Sharma Chaudhary, Gianmarco Puleo and Marco Cavaglià","doi":"10.1088/1361-6382/ae0388","DOIUrl":null,"url":null,"abstract":"Low-latency pipelines analyzing gravitational waves from compact binary coalescence events rely on matched filter techniques. Limitations in template banks and waveform modeling, as well as non-stationary detector noise cause errors in signal parameter recovery, especially for events with high chirp masses. We present a quantile regression neural network (NN) model that provides dynamic bounds on key parameters such as chirp mass, mass ratio, and total mass. We test the model on various synthetic datasets and real events from the LIGO-Virgo-KAGRA gravitational-wave transient GTWC-3 catalog. We find that the model accuracy is consistently over 90% across all the datasets. We explore the possibility of employing the NN bounds as priors in online parameter estimation (PE). We find that they reduce by 9% the number of likelihood evaluations. This approach may shorten PE run times without affecting sky localizations.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"76 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ae0388","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Low-latency pipelines analyzing gravitational waves from compact binary coalescence events rely on matched filter techniques. Limitations in template banks and waveform modeling, as well as non-stationary detector noise cause errors in signal parameter recovery, especially for events with high chirp masses. We present a quantile regression neural network (NN) model that provides dynamic bounds on key parameters such as chirp mass, mass ratio, and total mass. We test the model on various synthetic datasets and real events from the LIGO-Virgo-KAGRA gravitational-wave transient GTWC-3 catalog. We find that the model accuracy is consistently over 90% across all the datasets. We explore the possibility of employing the NN bounds as priors in online parameter estimation (PE). We find that they reduce by 9% the number of likelihood evaluations. This approach may shorten PE run times without affecting sky localizations.
一种实时估计引力波事件紧二进制合并参数的神经网络
低延迟管道分析从紧凑的二元合并事件引力波依赖于匹配滤波技术。模板组和波形建模的局限性以及非平稳检测器噪声会导致信号参数恢复的误差,特别是对于具有高啁啾质量的事件。我们提出了一个分位数回归神经网络(NN)模型,该模型提供了诸如啁啾质量、质量比和总质量等关键参数的动态边界。我们在各种合成数据集和来自LIGO-Virgo-KAGRA引力波瞬态GTWC-3目录的真实事件上测试了该模型。我们发现,在所有数据集上,模型的准确率始终在90%以上。我们探索了在在线参数估计(PE)中使用神经网络边界作为先验的可能性。我们发现他们减少了9%的可能性评估的数量。这种方法可以在不影响天空定位的情况下缩短PE运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信