Boosting the Low-Temperature CO Oxidation Activity of CeO2 via Photodirected Migration of Au Single Atoms

IF 11.3 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Xiaoqiang An, , , Jian Xu, , , Huachun Lan, , , Wenxuan Zhang, , , Zhongwei Liu*, , , Qiang Chen, , and , Jiuhui Qu*, 
{"title":"Boosting the Low-Temperature CO Oxidation Activity of CeO2 via Photodirected Migration of Au Single Atoms","authors":"Xiaoqiang An,&nbsp;, ,&nbsp;Jian Xu,&nbsp;, ,&nbsp;Huachun Lan,&nbsp;, ,&nbsp;Wenxuan Zhang,&nbsp;, ,&nbsp;Zhongwei Liu*,&nbsp;, ,&nbsp;Qiang Chen,&nbsp;, and ,&nbsp;Jiuhui Qu*,&nbsp;","doi":"10.1021/acs.est.5c06135","DOIUrl":null,"url":null,"abstract":"<p >Single-atom catalysts (SACs) represent a promising solution for maximizing active-site utilization in exhaust gas elimination, yet the restricted functionality of isolated sites in competitive reaction kinetics often limits their performance. In this study, we present a photomediated strategy for the dynamic assembly of multifarious active sites on faceted CeO<sub>2</sub>. Combined experimental and theoretical analyses reveal that light-induced migration of Au atoms on 111-CeO<sub>2</sub> transforms neighboring isolated Au atoms into nanoclusters, concurrently activating lattice oxygen near Au single atoms and molecular oxygen around Au nanoclusters. The dual active centers synergistically facilitate CO adsorption and oxygen dissociation of CO, enabling efficient room-temperature CO oxidation through a dual-path mechanism. The photoreconstructed active sites on 111-CeO<sub>2</sub> exhibit remarkable catalytic performance, demonstrating 4-fold and 45-fold enhancement in reaction kinetics compared to conventional 111-CeO<sub>2</sub>- and 100-CeO<sub>2</sub>-based SACs, respectively, while surpassing state-of-the-art CO oxidation catalysts. This work provides atomic-level insights into metal–support interactions and establishes a novel approach for designing high-performance SACs for environmental catalysis.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"59 38","pages":"20367–20376"},"PeriodicalIF":11.3000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.5c06135","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Single-atom catalysts (SACs) represent a promising solution for maximizing active-site utilization in exhaust gas elimination, yet the restricted functionality of isolated sites in competitive reaction kinetics often limits their performance. In this study, we present a photomediated strategy for the dynamic assembly of multifarious active sites on faceted CeO2. Combined experimental and theoretical analyses reveal that light-induced migration of Au atoms on 111-CeO2 transforms neighboring isolated Au atoms into nanoclusters, concurrently activating lattice oxygen near Au single atoms and molecular oxygen around Au nanoclusters. The dual active centers synergistically facilitate CO adsorption and oxygen dissociation of CO, enabling efficient room-temperature CO oxidation through a dual-path mechanism. The photoreconstructed active sites on 111-CeO2 exhibit remarkable catalytic performance, demonstrating 4-fold and 45-fold enhancement in reaction kinetics compared to conventional 111-CeO2- and 100-CeO2-based SACs, respectively, while surpassing state-of-the-art CO oxidation catalysts. This work provides atomic-level insights into metal–support interactions and establishes a novel approach for designing high-performance SACs for environmental catalysis.

Abstract Image

Abstract Image

光定向迁移Au单原子提高CeO2的低温CO氧化活性
单原子催化剂(SACs)是一种很有前途的解决方案,可以最大限度地利用废气消除中的活性位点,但在竞争反应动力学中,孤立位点的有限功能往往限制了它们的性能。在这项研究中,我们提出了一种光电介导策略,用于在多面CeO2上动态组装多种活性位点。结合实验和理论分析表明,光诱导Au原子在111-CeO2上的迁移使相邻的孤立Au原子转变成纳米团簇,同时激活Au单原子附近的晶格氧和Au纳米团簇周围的分子氧。双活性中心协同促进CO的吸附和氧解离,通过双程机制实现高效的室温CO氧化。光重构活性位点在111-CeO2上表现出显著的催化性能,与传统的111-CeO2和100- ceo2基SACs相比,反应动力学分别提高了4倍和45倍,同时超过了目前最先进的CO氧化催化剂。这项工作为金属支撑相互作用提供了原子水平的见解,并为设计用于环境催化的高性能sac建立了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信