Nonsingular predefined-time sliding mode trajectory tracking control for uncertain manipulator with predefined-time extended state observer.

IF 6.5
Jun Nie, Lujiao Dong, Qiaoqiao Sun, Chao Zhang, Chaoyang Zhang
{"title":"Nonsingular predefined-time sliding mode trajectory tracking control for uncertain manipulator with predefined-time extended state observer.","authors":"Jun Nie, Lujiao Dong, Qiaoqiao Sun, Chao Zhang, Chaoyang Zhang","doi":"10.1016/j.isatra.2025.08.055","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a global predefined-time-embedded two-layer sliding mode control strategy is established for the manipulator under the model uncertainties, exterior disturbances, unknown velocity measurements, and actuator saturation, enabling global trajectory tracking within the predefined time. Initially, a predefined-time extended state observer (PTESO) is devised in view of the first layer sliding mode manifold to observe the unknown velocity information and composite disturbance resulting from model uncertainty and exterior interference. Through the first layer sliding mode manifold, the auxiliary control policy is put forward to address the bounded total perturbations and guarantee the stability of the PTESO. Subsequently, a nonlinear predefined-time sliding mode control (PTSMC) methodology is presented, introducing the second layer sliding mode surface that integrates a piecewise nonlinear function concerning the joint position tracking error, thereby alleviating the singularity issue associated with PTSMC. Furthermore, a predefined-time anti-saturation compensator (PTASC) is implemented to address actuator saturation issue. By dynamically adjusting the output of the controller, the PTASC effectively mitigates the adverse effects of actuator saturation, thereby preserving robust tracking performance and stability. Consequently, employing predefined-time stability theory in combination with the Lyapunov method, the comprehensive stability verification and predefined-time convergence of the closed-loop system are undertaken. Simulation outcomes substantiate that the devised control scheme attains remarkable effectiveness and practicality.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.08.055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a global predefined-time-embedded two-layer sliding mode control strategy is established for the manipulator under the model uncertainties, exterior disturbances, unknown velocity measurements, and actuator saturation, enabling global trajectory tracking within the predefined time. Initially, a predefined-time extended state observer (PTESO) is devised in view of the first layer sliding mode manifold to observe the unknown velocity information and composite disturbance resulting from model uncertainty and exterior interference. Through the first layer sliding mode manifold, the auxiliary control policy is put forward to address the bounded total perturbations and guarantee the stability of the PTESO. Subsequently, a nonlinear predefined-time sliding mode control (PTSMC) methodology is presented, introducing the second layer sliding mode surface that integrates a piecewise nonlinear function concerning the joint position tracking error, thereby alleviating the singularity issue associated with PTSMC. Furthermore, a predefined-time anti-saturation compensator (PTASC) is implemented to address actuator saturation issue. By dynamically adjusting the output of the controller, the PTASC effectively mitigates the adverse effects of actuator saturation, thereby preserving robust tracking performance and stability. Consequently, employing predefined-time stability theory in combination with the Lyapunov method, the comprehensive stability verification and predefined-time convergence of the closed-loop system are undertaken. Simulation outcomes substantiate that the devised control scheme attains remarkable effectiveness and practicality.

带扩展状态观测器的不确定机械臂非奇异时间滑模轨迹跟踪控制。
在模型不确定性、外部干扰、未知速度测量值和执行器饱和情况下,建立了一种全局预定义嵌入时间的两层滑模控制策略,实现了在预定义时间内的全局轨迹跟踪。首先,针对第一层滑模流形设计了一个预定义时间扩展状态观测器(PTESO)来观测未知的速度信息以及模型不确定性和外部干扰引起的复合干扰。通过第一层滑模流形,提出了辅助控制策略,以解决有界总摄动,保证PTESO的稳定性。随后,提出了一种非线性预定义时间滑模控制(PTSMC)方法,引入了第二层滑模曲面,该曲面集成了与关节位置跟踪误差相关的分段非线性函数,从而缓解了PTSMC的奇异性问题。此外,为了解决执行器的饱和问题,还实现了一个预定义时间抗饱和补偿器(PTASC)。通过动态调节控制器的输出,PTASC有效地减轻了执行器饱和的不利影响,从而保持了鲁棒跟踪性能和稳定性。因此,利用预定义时间稳定性理论结合Lyapunov方法,对闭环系统进行了全面的稳定性验证和预定义时间收敛性验证。仿真结果表明,所设计的控制方案具有显著的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信