Automated lesion detection in endoscopic imagery for small animal models - a pilot study.

Thomas Eixelberger, Ralf Hackner, Qi Fang, Bisan Abdalfatah Zohud, Michael Stürzl, Elisabeth Naschberger, Thomas Wittenberg
{"title":"Automated lesion detection in endoscopic imagery for small animal models - a pilot study.","authors":"Thomas Eixelberger, Ralf Hackner, Qi Fang, Bisan Abdalfatah Zohud, Michael Stürzl, Elisabeth Naschberger, Thomas Wittenberg","doi":"10.1515/bmt-2025-0179","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Small animal models, particularly mice, are crucial for studying gastrointestinal diseases like colorectal cancer. Tumor assessment via colonoscopy generates large video datasets, necessitating automated analysis due to limited resources and time-consuming manual review.</p><p><strong>Methods: </strong>We employed a YOLOv7-based deep learning model pre-trained on human polyp images to detect tumors in mouse colonoscopy videos. Detection was enhanced using a stool detector and a color-based filter. Lesions were classified from '0' (no tumor) to '5' (tumor >50 % of colon diameter) using a custom ratio-based method. The system was evaluated on 150 videos from 28 mice over 6 weeks, with 125 videos containing tumors.</p><p><strong>Results: </strong>Initial detection yielded a Precision of 0.576, Recall of 0.916, and Accuracy of 0.593. Adding the stool detector improved results to 0.932, 0.946, and 0.897, respectively. Compared to expert annotations, classification reached 0.759 Precision, 0.774 Recall, and 0.774 Accuracy over all five classes.</p><p><strong>Conclusions: </strong>The proposed approach reliably detects and classifies colon tumors in mice, offering real-time support for preclinical endoscopic studies. Further evaluation will provide more insights into its performance.</p>","PeriodicalId":93905,"journal":{"name":"Biomedizinische Technik. Biomedical engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedizinische Technik. Biomedical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bmt-2025-0179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Small animal models, particularly mice, are crucial for studying gastrointestinal diseases like colorectal cancer. Tumor assessment via colonoscopy generates large video datasets, necessitating automated analysis due to limited resources and time-consuming manual review.

Methods: We employed a YOLOv7-based deep learning model pre-trained on human polyp images to detect tumors in mouse colonoscopy videos. Detection was enhanced using a stool detector and a color-based filter. Lesions were classified from '0' (no tumor) to '5' (tumor >50 % of colon diameter) using a custom ratio-based method. The system was evaluated on 150 videos from 28 mice over 6 weeks, with 125 videos containing tumors.

Results: Initial detection yielded a Precision of 0.576, Recall of 0.916, and Accuracy of 0.593. Adding the stool detector improved results to 0.932, 0.946, and 0.897, respectively. Compared to expert annotations, classification reached 0.759 Precision, 0.774 Recall, and 0.774 Accuracy over all five classes.

Conclusions: The proposed approach reliably detects and classifies colon tumors in mice, offering real-time support for preclinical endoscopic studies. Further evaluation will provide more insights into its performance.

小动物模型的内窥镜图像自动病变检测-一项试点研究。
目的:小动物模型,特别是小鼠,对于研究结肠直肠癌等胃肠道疾病至关重要。通过结肠镜检查进行肿瘤评估产生大量视频数据集,由于资源有限和耗时的人工审查,需要自动分析。方法:采用基于yolov7的深度学习模型对人类息肉图像进行预训练,检测小鼠结肠镜检查视频中的肿瘤。使用粪便检测器和基于颜色的过滤器加强检测。病变从0(无肿瘤)到5(肿瘤>50 %结肠直径),采用自定义的基于比例的方法进行分类。该系统在6周内对28只小鼠的150个视频进行了评估,其中125个视频含有肿瘤。结果:初始检测精密度为0.576,召回率为0.916,正确率为0.593。添加粪便检测器将结果分别提高到0.932、0.946和0.897。与专家注释相比,分类精度达到0.759,召回率达到0.774,准确率达到0.774。结论:该方法可靠地检测和分类小鼠结肠肿瘤,为临床前内镜研究提供实时支持。进一步的评估将提供对其性能的更多见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信