{"title":"A Novel Competency-Based Simulation Model for Thoracoscopic Lung Resection.","authors":"Ganwei Liu, Feng Yang, Zuli Zhou, Guanchao Jiang","doi":"10.1055/a-2702-2239","DOIUrl":null,"url":null,"abstract":"<p><p>Simulation-based thoracic surgery training is increasingly incorporating physical models to enhance traditional learning methods. Conventional box trainers, though useful for basic skills, often lack anatomical accuracy and tactile feedback, limiting their relevance for complex procedures like thoracoscopic lung resection. High-fidelity 3D-printed lung models offer realistic anatomy and procedural flow, but their educational impact remains underexplored.Fifty-two surgical residents without prior thoracoscopic experience were randomly assigned to a high-fidelity lung model group or a conventional Fundamentals of Laparoscopic Surgery (FLS) box trainer group. All participants completed a baseline thoracic anatomy test and received standardized educational materials. The lung model group received structured simulation training on procedural anatomy and operative steps, while the FLS group practiced fundamental laparoscopic tasks. After training, participants repeated the anatomy test and performed a thoracoscopic lung wedge resection in a live animal model. Performance was assessed using the Objective Structured Assessment of Technical Skill (OSATS) and a 5-point confidence scale.A total of 52 surgical residents participated in the study, with 26 assigned to the high-fidelity lung model group and 26 to the FLS trainer group. Baseline anatomy scores were similar between groups (65.42 ± 6.10 vs. 66.12 ± 5.92; <i>p</i> = 0.710). Posttraining, the lung model group showed greater gains in anatomy comprehension (87.60 ± 4.75 vs. 78.19 ± 5.54; <i>p</i> < 0.001), higher OSATS scores (19.18 ± 2.43 vs. 15.41 ± 2.41; <i>p</i> < 0.001), and increased confidence (3.13 ± 0.61 vs. 2.27 ± 0.68; <i>p</i> = 0.002).High-fidelity 3D-printed lung models significantly enhance anatomical understanding, thoracoscopic skills, and confidence compared with conventional box trainers. These results support integrating anatomically accurate simulation into thoracic surgical education to improve both cognitive and psychomotor outcomes.</p>","PeriodicalId":23057,"journal":{"name":"Thoracic and Cardiovascular Surgeon","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thoracic and Cardiovascular Surgeon","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2702-2239","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Simulation-based thoracic surgery training is increasingly incorporating physical models to enhance traditional learning methods. Conventional box trainers, though useful for basic skills, often lack anatomical accuracy and tactile feedback, limiting their relevance for complex procedures like thoracoscopic lung resection. High-fidelity 3D-printed lung models offer realistic anatomy and procedural flow, but their educational impact remains underexplored.Fifty-two surgical residents without prior thoracoscopic experience were randomly assigned to a high-fidelity lung model group or a conventional Fundamentals of Laparoscopic Surgery (FLS) box trainer group. All participants completed a baseline thoracic anatomy test and received standardized educational materials. The lung model group received structured simulation training on procedural anatomy and operative steps, while the FLS group practiced fundamental laparoscopic tasks. After training, participants repeated the anatomy test and performed a thoracoscopic lung wedge resection in a live animal model. Performance was assessed using the Objective Structured Assessment of Technical Skill (OSATS) and a 5-point confidence scale.A total of 52 surgical residents participated in the study, with 26 assigned to the high-fidelity lung model group and 26 to the FLS trainer group. Baseline anatomy scores were similar between groups (65.42 ± 6.10 vs. 66.12 ± 5.92; p = 0.710). Posttraining, the lung model group showed greater gains in anatomy comprehension (87.60 ± 4.75 vs. 78.19 ± 5.54; p < 0.001), higher OSATS scores (19.18 ± 2.43 vs. 15.41 ± 2.41; p < 0.001), and increased confidence (3.13 ± 0.61 vs. 2.27 ± 0.68; p = 0.002).High-fidelity 3D-printed lung models significantly enhance anatomical understanding, thoracoscopic skills, and confidence compared with conventional box trainers. These results support integrating anatomically accurate simulation into thoracic surgical education to improve both cognitive and psychomotor outcomes.
期刊介绍:
The Thoracic and Cardiovascular Surgeon publishes articles of the highest standard from internationally recognized thoracic and cardiovascular surgeons, cardiologists, anesthesiologists, physiologists, and pathologists. This journal is an essential resource for anyone working in this field.
Original articles, short communications, reviews and important meeting announcements keep you abreast of key clinical advances, as well as providing the theoretical background of cardiovascular and thoracic surgery. Case reports are published in our Open Access companion journal The Thoracic and Cardiovascular Surgeon Reports.