Diala Lteif, Divya Appapogu, Sarah A. Bargal, Bryan A. Plummer, Vijaya B. Kolachalama
{"title":"Anatomy-Guided, Modality-Agnostic Segmentation of Neuroimaging Abnormalities","authors":"Diala Lteif, Divya Appapogu, Sarah A. Bargal, Bryan A. Plummer, Vijaya B. Kolachalama","doi":"10.1002/hbm.70329","DOIUrl":null,"url":null,"abstract":"<p>Magnetic resonance imaging (MRI) offers multiple sequences that provide complementary views of brain anatomy and pathology. However, real-world datasets often exhibit variability in sequence availability due to clinical and logistical constraints. This variability complicates radiological interpretation and limits the generalizability of machine learning models that depend on a consistent multimodal input. Here, we propose an anatomy-guided, modality-agnostic framework to assess disease-related abnormalities in brain MRI, leveraging structural context to ensure robustness in diverse input configurations. Central to our approach is Region ModalMix (RMM), an augmentation strategy that integrates anatomical priors during training to improve model performance under missing or variable modality conditions. Using the BraTS 2020 dataset (<i>n</i> = 369), our framework outperformed state-of-the-art methods, achieving a 9.68 mm average reduction in 95th percentile Hausdorff Distance (HD95) and a 1.36 percentage point improvement in Dice Similarity Coefficient (DSC) over baselines with only one available modality. To evaluate out-of-distribution generalization, we tested RMM on the MU-Glioma-Post dataset (<i>n</i> = 593), which includes heterogeneous post-operative glioma cases. Despite distribution shifts, RMM maintained strong performance, reducing HD95 by 18.24 mm and improving DSC by 9.54% points in the most severe missing-modality scenario. Our framework is applicable to multimodal neuroimaging pipelines, enabling more generalizable abnormality detection under heterogeneous data availability.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 14","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12441204/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70329","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic resonance imaging (MRI) offers multiple sequences that provide complementary views of brain anatomy and pathology. However, real-world datasets often exhibit variability in sequence availability due to clinical and logistical constraints. This variability complicates radiological interpretation and limits the generalizability of machine learning models that depend on a consistent multimodal input. Here, we propose an anatomy-guided, modality-agnostic framework to assess disease-related abnormalities in brain MRI, leveraging structural context to ensure robustness in diverse input configurations. Central to our approach is Region ModalMix (RMM), an augmentation strategy that integrates anatomical priors during training to improve model performance under missing or variable modality conditions. Using the BraTS 2020 dataset (n = 369), our framework outperformed state-of-the-art methods, achieving a 9.68 mm average reduction in 95th percentile Hausdorff Distance (HD95) and a 1.36 percentage point improvement in Dice Similarity Coefficient (DSC) over baselines with only one available modality. To evaluate out-of-distribution generalization, we tested RMM on the MU-Glioma-Post dataset (n = 593), which includes heterogeneous post-operative glioma cases. Despite distribution shifts, RMM maintained strong performance, reducing HD95 by 18.24 mm and improving DSC by 9.54% points in the most severe missing-modality scenario. Our framework is applicable to multimodal neuroimaging pipelines, enabling more generalizable abnormality detection under heterogeneous data availability.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.