Quantifying biological heterogeneity in nano-engineered particle-cell interaction experiments.

IF 3.5 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2025-09-01 Epub Date: 2025-09-17 DOI:10.1098/rsif.2025.0206
Ryan J Murphy, Matthew Faria, James M Osborne, Stuart T Johnston
{"title":"Quantifying biological heterogeneity in nano-engineered particle-cell interaction experiments.","authors":"Ryan J Murphy, Matthew Faria, James M Osborne, Stuart T Johnston","doi":"10.1098/rsif.2025.0206","DOIUrl":null,"url":null,"abstract":"<p><p>Nano-engineered particles are a promising tool for medical diagnostics, biomedical imaging and targeted drug delivery. Fundamental to the assessment of particle performance are <i>in vitro</i> particle-cell interaction experiments. These experiments can be summarized with key parameters that facilitate objective comparisons across various cell and particle pairs, such as the particle-cell association rate. Previous studies often focus on point estimates of such parameters and neglect heterogeneity in routine measurements. In this study, we develop an ordinary differential equation-based mechanistic mathematical model that incorporates and exploits the heterogeneity in routine measurements. Connecting this model to data using approximate Bayesian computation parameter inference and prediction tools, we reveal the significant role of heterogeneity in parameters that characterize particle-cell interactions. We then generate predictions for key quantities, such as the time evolution of the number of particles per cell. Finally, by systematically exploring how the choice of experimental time points influences estimates of key quantities, we identify optimal experimental time points that maximize the information that is gained from particle-cell interaction experiments.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 230","pages":"20250206"},"PeriodicalIF":3.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12440624/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2025.0206","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Nano-engineered particles are a promising tool for medical diagnostics, biomedical imaging and targeted drug delivery. Fundamental to the assessment of particle performance are in vitro particle-cell interaction experiments. These experiments can be summarized with key parameters that facilitate objective comparisons across various cell and particle pairs, such as the particle-cell association rate. Previous studies often focus on point estimates of such parameters and neglect heterogeneity in routine measurements. In this study, we develop an ordinary differential equation-based mechanistic mathematical model that incorporates and exploits the heterogeneity in routine measurements. Connecting this model to data using approximate Bayesian computation parameter inference and prediction tools, we reveal the significant role of heterogeneity in parameters that characterize particle-cell interactions. We then generate predictions for key quantities, such as the time evolution of the number of particles per cell. Finally, by systematically exploring how the choice of experimental time points influences estimates of key quantities, we identify optimal experimental time points that maximize the information that is gained from particle-cell interaction experiments.

Abstract Image

Abstract Image

Abstract Image

量化纳米工程颗粒-细胞相互作用实验中的生物异质性。
纳米工程颗粒在医学诊断、生物医学成像和靶向药物递送方面是一种很有前途的工具。评估颗粒性能的基础是体外颗粒-细胞相互作用实验。这些实验可以用关键参数进行总结,这些参数便于在各种细胞和粒子对之间进行客观比较,例如粒子-细胞结合率。以往的研究往往侧重于这些参数的点估计,而忽略了常规测量中的异质性。在这项研究中,我们建立了一个基于常微分方程的机械数学模型,该模型包含并利用了常规测量中的异质性。使用近似贝叶斯计算参数推断和预测工具将该模型与数据联系起来,我们揭示了异质性在表征粒子-细胞相互作用的参数中的重要作用。然后我们生成关键数量的预测,例如每个细胞的粒子数量的时间演变。最后,通过系统地探索实验时间点的选择如何影响关键数量的估计,我们确定了从粒子-细胞相互作用实验中获得的信息最大化的最佳实验时间点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信