María Florencia Azcoaga Chort, Virginia Inés Rodríguez, Gonzalo García, Lucía Toscani, Natalia Soledad Veizaga
{"title":"Enhancing Direct Ethanol Fuel Cell Performance: Mesoporous Carbon Functionalization for Optimized PtRe Catalysts.","authors":"María Florencia Azcoaga Chort, Virginia Inés Rodríguez, Gonzalo García, Lucía Toscani, Natalia Soledad Veizaga","doi":"10.1002/cplu.202500385","DOIUrl":null,"url":null,"abstract":"<p><p>The development of advanced anode electrocatalysts for direct ethanol fuel cells (DEFCs) faces key challenges related to the complete oxidation of ethanol, particularly the cleavage of the CC bond. This study investigates the impact of chemical functionalization (using HNO<sub>3</sub>, H<sub>2</sub>O<sub>2</sub>, and urea) of mesoporous carbon (MC) supports on the performance of Pt and PtRe catalysts. Functionalization modifies the carbon structure, introducing nanowindows or causing wall degradation, altering conductivity and surface chemistry without significantly affecting particle size. Catalysts synthesized by the polyol method are characterized structurally, texturally, and electrochemically. The results demonstrate that Re addition enhances ethanol electrooxidation through synergistic effects with Pt, reducing onset potentials and increasing electrochemically active surface areas, particularly at an optimal Re loading of 3 wt%. Functionalized supports, especially MC-HNO<sub>3</sub>, further improve catalyst dispersion and electrochemical performance. Prototype fuel cell tests confirm these trends, highlighting the importance of metal synergy and carbon surface functionalization.</p>","PeriodicalId":148,"journal":{"name":"ChemPlusChem","volume":" ","pages":"e202500385"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPlusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cplu.202500385","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of advanced anode electrocatalysts for direct ethanol fuel cells (DEFCs) faces key challenges related to the complete oxidation of ethanol, particularly the cleavage of the CC bond. This study investigates the impact of chemical functionalization (using HNO3, H2O2, and urea) of mesoporous carbon (MC) supports on the performance of Pt and PtRe catalysts. Functionalization modifies the carbon structure, introducing nanowindows or causing wall degradation, altering conductivity and surface chemistry without significantly affecting particle size. Catalysts synthesized by the polyol method are characterized structurally, texturally, and electrochemically. The results demonstrate that Re addition enhances ethanol electrooxidation through synergistic effects with Pt, reducing onset potentials and increasing electrochemically active surface areas, particularly at an optimal Re loading of 3 wt%. Functionalized supports, especially MC-HNO3, further improve catalyst dispersion and electrochemical performance. Prototype fuel cell tests confirm these trends, highlighting the importance of metal synergy and carbon surface functionalization.
期刊介绍:
ChemPlusChem is a peer-reviewed, general chemistry journal that brings readers the very best in multidisciplinary research centering on chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
Fully comprehensive in its scope, ChemPlusChem publishes articles covering new results from at least two different aspects (subfields) of chemistry or one of chemistry and one of another scientific discipline (one chemistry topic plus another one, hence the title ChemPlusChem). All suitable submissions undergo balanced peer review by experts in the field to ensure the highest quality, originality, relevance, significance, and validity.