Biharmonic-Drive Tunable Josephson Diode

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Laura Borgongino*, , , Rubén Seoane Souto, , , Alessandro Paghi, , , Giulio Senesi, , , Katarzyna Skibinska, , , Lucia Sorba, , , Elisa Riccardi, , , Francesco Giazotto, , and , Elia Strambini*, 
{"title":"Biharmonic-Drive Tunable Josephson Diode","authors":"Laura Borgongino*,&nbsp;, ,&nbsp;Rubén Seoane Souto,&nbsp;, ,&nbsp;Alessandro Paghi,&nbsp;, ,&nbsp;Giulio Senesi,&nbsp;, ,&nbsp;Katarzyna Skibinska,&nbsp;, ,&nbsp;Lucia Sorba,&nbsp;, ,&nbsp;Elisa Riccardi,&nbsp;, ,&nbsp;Francesco Giazotto,&nbsp;, and ,&nbsp;Elia Strambini*,&nbsp;","doi":"10.1021/acs.nanolett.5c03922","DOIUrl":null,"url":null,"abstract":"<p >The superconducting diode effect has garnered significant interest due to its prospective applications in cryogenic electronics and computing, enabling directional supercurrent transport. This phenomenon has been demonstrated across various superconducting platforms, which typically necessitate unconventional materials with broken spatial symmetries or external magnetic fields, posing scalability and integration challenges. This work introduces an innovative method to realize the superconducting diode effect by disrupting spatiotemporal symmetries in a conventional Josephson junction utilizing a biharmonic alternating-current (AC) drive signal. We achieve wireless modulation of the diode’s polarity and efficiency with an antenna. Our findings indicate a diode efficiency reaching the ideal 100% over a broad frequency range, with a temperature resilience of up to 800 mK, and efficient AC signal rectification. This versatile and platform-independent superconducting diode signifies a promising component for advancing future superconducting digital electronics, including efficient logic gates, ultrafast switches, and dynamic half-wave supercurrent rectifiers.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 39","pages":"14451–14458"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.5c03922","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c03922","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The superconducting diode effect has garnered significant interest due to its prospective applications in cryogenic electronics and computing, enabling directional supercurrent transport. This phenomenon has been demonstrated across various superconducting platforms, which typically necessitate unconventional materials with broken spatial symmetries or external magnetic fields, posing scalability and integration challenges. This work introduces an innovative method to realize the superconducting diode effect by disrupting spatiotemporal symmetries in a conventional Josephson junction utilizing a biharmonic alternating-current (AC) drive signal. We achieve wireless modulation of the diode’s polarity and efficiency with an antenna. Our findings indicate a diode efficiency reaching the ideal 100% over a broad frequency range, with a temperature resilience of up to 800 mK, and efficient AC signal rectification. This versatile and platform-independent superconducting diode signifies a promising component for advancing future superconducting digital electronics, including efficient logic gates, ultrafast switches, and dynamic half-wave supercurrent rectifiers.

Abstract Image

双谐波驱动可调谐约瑟夫森二极管。
超导二极管效应由于其在低温电子和计算领域的潜在应用而引起了人们的极大兴趣,从而实现了定向超导传输。这种现象已经在各种超导平台上得到了证明,这些平台通常需要具有破坏空间对称性或外部磁场的非常规材料,这给可扩展性和集成带来了挑战。本文介绍了一种利用双谐波交流(AC)驱动信号破坏传统约瑟夫森结的时空对称性来实现超导二极管效应的创新方法。我们用天线实现了二极管极性和效率的无线调制。我们的研究结果表明,二极管的效率在宽频率范围内达到理想的100%,温度弹性高达800 mK,并且有效的交流信号整流。这种多功能和平台无关的超导二极管标志着推进未来超导数字电子产品的有前途的组件,包括高效逻辑门,超快开关和动态半波超导整流器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信