Proposed Experiments for Detecting Contextual Hidden Variables

IF 1 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Konstantinos Papatryfonos, Louis Vervoort
{"title":"Proposed Experiments for Detecting Contextual Hidden Variables","authors":"Konstantinos Papatryfonos,&nbsp;Louis Vervoort","doi":"10.1007/s10701-025-00877-8","DOIUrl":null,"url":null,"abstract":"<div><p>We propose two quantum experiments – modified Bell tests – that could detect contextual hidden variables underlying quantum mechanics. The experiments are inspired by hydrodynamic pilot-wave systems that mimic a wide range of quantum effects and exhibit a classical analog of contextuality. To justify the experiments, we show that contextual hidden variables are inevitable and ‘physics as usual’ if a unification between quantum mechanics and general relativity is possible. Accordingly, contextual theories can bypass Bell’s theorem in a way that is both local and non-conspiratorial. We end with a note on the relevance of exploratory experiments in the foundations of quantum physics.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 5","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-025-00877-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose two quantum experiments – modified Bell tests – that could detect contextual hidden variables underlying quantum mechanics. The experiments are inspired by hydrodynamic pilot-wave systems that mimic a wide range of quantum effects and exhibit a classical analog of contextuality. To justify the experiments, we show that contextual hidden variables are inevitable and ‘physics as usual’ if a unification between quantum mechanics and general relativity is possible. Accordingly, contextual theories can bypass Bell’s theorem in a way that is both local and non-conspiratorial. We end with a note on the relevance of exploratory experiments in the foundations of quantum physics.

Abstract Image

Abstract Image

情境隐藏变量检测的实验建议
我们提出了两个量子实验——改进的贝尔测试——可以检测量子力学背后的上下文隐藏变量。实验的灵感来自于流体动力导航波系统,它模拟了广泛的量子效应,并展示了经典的情境模拟。为了证明实验的合理性,我们表明,如果量子力学和广义相对论之间的统一是可能的,那么上下文隐藏变量是不可避免的,并且“物理一如既往”。因此,语境理论可以以一种既局部性又非阴谋性的方式绕过贝尔定理。最后,我们对量子物理学基础中探索性实验的相关性作了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Foundations of Physics
Foundations of Physics 物理-物理:综合
CiteScore
2.70
自引率
6.70%
发文量
104
审稿时长
6-12 weeks
期刊介绍: The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others. Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments. Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises. The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信