{"title":"Activity-Cycle Variations of Convection Scales in Subsurface Layers of the Sun","authors":"Alexander V. Getling, Alexander G. Kosovichev","doi":"10.1007/s11207-025-02546-5","DOIUrl":null,"url":null,"abstract":"<div><p>We use subsurface-flow velocity maps inferred by time–distance helioseismology from Doppler measurements with the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO) to investigate variations of large-scale convection during Solar Cycles 24 and 25 in the 19-Mm-deep layer. The spatial power spectra of the horizontal-flow divergence reveal well-defined characteristic scales of solar supergranulation in the upper 4 Mm layer, while the giant-cell scale is prominent below levels of <span>\\(d \\sim 8\\)</span> Mm. We find that the characteristic scales of supergranulation remain stable while the giant scales increase during the periods of the 11-year activity cycle maxima. The power of the giant-cell scales increases with the enhancement of solar activity. This may be due to large-scale flows around active regions and, presumably, solar-cycle variations of the convection-zone stratification.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"300 9","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-025-02546-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We use subsurface-flow velocity maps inferred by time–distance helioseismology from Doppler measurements with the Helioseismic and Magnetic Imager (HMI) of the Solar Dynamics Observatory (SDO) to investigate variations of large-scale convection during Solar Cycles 24 and 25 in the 19-Mm-deep layer. The spatial power spectra of the horizontal-flow divergence reveal well-defined characteristic scales of solar supergranulation in the upper 4 Mm layer, while the giant-cell scale is prominent below levels of \(d \sim 8\) Mm. We find that the characteristic scales of supergranulation remain stable while the giant scales increase during the periods of the 11-year activity cycle maxima. The power of the giant-cell scales increases with the enhancement of solar activity. This may be due to large-scale flows around active regions and, presumably, solar-cycle variations of the convection-zone stratification.
期刊介绍:
Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.