A. Bhargav, M. Ahmed, K.S. Gavel, A. Ali, M. Lodhe
{"title":"Evaluation of Joint Strength and Process Parameters in Aluminium-Stainless Steel by Electromagnetic Pulse Welding","authors":"A. Bhargav, M. Ahmed, K.S. Gavel, A. Ali, M. Lodhe","doi":"10.1007/s40799-025-00787-4","DOIUrl":null,"url":null,"abstract":"<div><p>Electromagnetic pulse welding (EMPW) is a solid-state joining technique for similar and dissimilar metals. In present work, analysis of the joining between aluminium (AA6061) and stainless steel (SS316) is attempted. A numerical analysis is carried out to establish the relation between electromagnetic and mechanical parameters such as current density, magnetic field, lorentz force, velocity, temperature, and load-bearing capacity. The aluminium alloy tube is joined with the steel rod at varying operating parameters such as voltage (19 and 20 kV), energy (30 and 36.1 kJ), capacitance (150 and 200µF), stand-off distance (1.0, 1.5, 2.0, and 2.5 mm). The joint strength of 114 MPa was obtained at 2.0 mm SOD for 30 kJ of energy and 460 m/sec of impact velocity. Microstructural analysis confirms the formation of wavy and micro-porous interfaces. A severe plastic deformation causes the localized melting of the interface, leading to intermetallic phase formation. A high hardness of ~ 520HV<sub>0.5</sub> was observed at the interface as compared to base metals. A leak-proof test using the hydraulic pressure technique shows no leakage at 100 kg/cm<sup>2</sup> pressure.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"49 5","pages":"901 - 917"},"PeriodicalIF":1.9000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Techniques","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40799-025-00787-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electromagnetic pulse welding (EMPW) is a solid-state joining technique for similar and dissimilar metals. In present work, analysis of the joining between aluminium (AA6061) and stainless steel (SS316) is attempted. A numerical analysis is carried out to establish the relation between electromagnetic and mechanical parameters such as current density, magnetic field, lorentz force, velocity, temperature, and load-bearing capacity. The aluminium alloy tube is joined with the steel rod at varying operating parameters such as voltage (19 and 20 kV), energy (30 and 36.1 kJ), capacitance (150 and 200µF), stand-off distance (1.0, 1.5, 2.0, and 2.5 mm). The joint strength of 114 MPa was obtained at 2.0 mm SOD for 30 kJ of energy and 460 m/sec of impact velocity. Microstructural analysis confirms the formation of wavy and micro-porous interfaces. A severe plastic deformation causes the localized melting of the interface, leading to intermetallic phase formation. A high hardness of ~ 520HV0.5 was observed at the interface as compared to base metals. A leak-proof test using the hydraulic pressure technique shows no leakage at 100 kg/cm2 pressure.
期刊介绍:
Experimental Techniques is a bimonthly interdisciplinary publication of the Society for Experimental Mechanics focusing on the development, application and tutorial of experimental mechanics techniques.
The purpose for Experimental Techniques is to promote pedagogical, technical and practical advancements in experimental mechanics while supporting the Society''s mission and commitment to interdisciplinary application, research and development, education, and active promotion of experimental methods to:
- Increase the knowledge of physical phenomena
- Further the understanding of the behavior of materials, structures, and systems
- Provide the necessary physical observations necessary to improve and assess new analytical and computational approaches.