On two nucleons near unitarity with perturbative pions

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, NUCLEAR
Yu-Ping Teng, Harald W. Grießhammer
{"title":"On two nucleons near unitarity with perturbative pions","authors":"Yu-Ping Teng,&nbsp;Harald W. Grießhammer","doi":"10.1140/epja/s10050-025-01675-6","DOIUrl":null,"url":null,"abstract":"<div><p>We explore the impact of perturbative pions on the Unitarity Expansion in the two-nucleon S-waves of Chiral Effective Field Theory at next-to-next-to leading order (<span>\\(\\textrm{N}^{2}\\)</span>LO). Pion exchange explicitly breaks the nontrivial fixed point’s universality, i.e.  invariance of S waves under both conformal and Wigner’s combined <span>\\(\\textrm{SU}(4)\\)</span> spin–isospin transformations. On the other hand, Unitarity explicitly breaks chiral symmetry. The two seem incompatible in their respective exact-symmetry limits. <span>\\({\\upchi }\\textrm{EFT}\\)</span> with Perturbative Pions in the Unitarity Expansion resolves the apparent conflict in the Unitarity Window (phase shifts <span>\\(45^\\circ \\lesssim \\delta (k)\\lesssim 135^\\circ \\)</span>), i.e.  around momenta <span>\\(k\\approx m_\\pi \\)</span> most relevant for low-energy nuclear systems. Its only LO scale is the scattering momentum; NLO adds only scattering length, effective range and non-iterated one-pion exchange (OPE); and <span>\\(\\textrm{N}^{2}\\)</span>LO only once-iterated OPE. Agreement in the <span>\\({\\phantom {0}}^{1}\\textrm{S}_{0}\\)</span> channel is very good. Apparently large discrepancies in the <span>\\({\\phantom {0}}^{3}\\textrm{S}_{1}\\)</span> channel even at <span>\\(k\\approx 100\\;\\textrm{MeV}\\)</span> are remedied by taking at <span>\\(\\textrm{N}^{2}\\)</span>LO only the central part of OPE. In contradistinction to the tensor part, it is identical in the <span>\\({\\phantom {0}}^{1}\\textrm{S}_{0}\\)</span> and <span>\\({\\phantom {0}}^{3}\\textrm{S}_{1}\\)</span> channels. Both channels then match empirical phase shifts and pole parameters well within mutually consistent quantitative theory uncertainty estimates. Pionic effects are small, even for <span>\\(k\\gtrsim m_\\pi \\)</span>. Empirical breakdown scales are consistent with <span>\\(\\overline{\\Lambda }_{\\textrm{NN}}=\\frac{16\\pi f_\\pi ^2}{g_A^2M}\\approx 300\\;\\textrm{MeV}\\)</span>, where iterated OPE is not suppressed. We therefore conjecture: Both conformal and Wigner symmetry in the Unitarity Expansion show <i>persistence</i>, i.e.  the footprint of both combined dominates even for <span>\\(k\\gtrsim m_\\pi \\)</span> and is more relevant than chiral symmetry, so that the tensor/Wigner-<span>\\(\\textrm{SU}(4)\\)</span> symmetry-breaking part of OPE does not enter before <span>\\(\\textrm{N}^{3}\\)</span>LO. We also discuss the potential relevance of entanglement and possible resolution of a conflict with the strength of the tensor interaction in the large-<span>\\(N_C\\)</span> expansion.</p></div>","PeriodicalId":786,"journal":{"name":"The European Physical Journal A","volume":"61 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epja/s10050-025-01675-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

We explore the impact of perturbative pions on the Unitarity Expansion in the two-nucleon S-waves of Chiral Effective Field Theory at next-to-next-to leading order (\(\textrm{N}^{2}\)LO). Pion exchange explicitly breaks the nontrivial fixed point’s universality, i.e.  invariance of S waves under both conformal and Wigner’s combined \(\textrm{SU}(4)\) spin–isospin transformations. On the other hand, Unitarity explicitly breaks chiral symmetry. The two seem incompatible in their respective exact-symmetry limits. \({\upchi }\textrm{EFT}\) with Perturbative Pions in the Unitarity Expansion resolves the apparent conflict in the Unitarity Window (phase shifts \(45^\circ \lesssim \delta (k)\lesssim 135^\circ \)), i.e.  around momenta \(k\approx m_\pi \) most relevant for low-energy nuclear systems. Its only LO scale is the scattering momentum; NLO adds only scattering length, effective range and non-iterated one-pion exchange (OPE); and \(\textrm{N}^{2}\)LO only once-iterated OPE. Agreement in the \({\phantom {0}}^{1}\textrm{S}_{0}\) channel is very good. Apparently large discrepancies in the \({\phantom {0}}^{3}\textrm{S}_{1}\) channel even at \(k\approx 100\;\textrm{MeV}\) are remedied by taking at \(\textrm{N}^{2}\)LO only the central part of OPE. In contradistinction to the tensor part, it is identical in the \({\phantom {0}}^{1}\textrm{S}_{0}\) and \({\phantom {0}}^{3}\textrm{S}_{1}\) channels. Both channels then match empirical phase shifts and pole parameters well within mutually consistent quantitative theory uncertainty estimates. Pionic effects are small, even for \(k\gtrsim m_\pi \). Empirical breakdown scales are consistent with \(\overline{\Lambda }_{\textrm{NN}}=\frac{16\pi f_\pi ^2}{g_A^2M}\approx 300\;\textrm{MeV}\), where iterated OPE is not suppressed. We therefore conjecture: Both conformal and Wigner symmetry in the Unitarity Expansion show persistence, i.e.  the footprint of both combined dominates even for \(k\gtrsim m_\pi \) and is more relevant than chiral symmetry, so that the tensor/Wigner-\(\textrm{SU}(4)\) symmetry-breaking part of OPE does not enter before \(\textrm{N}^{3}\)LO. We also discuss the potential relevance of entanglement and possible resolution of a conflict with the strength of the tensor interaction in the large-\(N_C\) expansion.

关于两个具有微扰介子的接近统一的核子
我们探讨了扰动介子对手性有效场论中次-次-次-导阶双核子s波的单一性展开的影响(\(\textrm{N}^{2}\) LO)。介子交换明确地打破了非平凡不动点的普适性,即S波在共形变换和Wigner组合\(\textrm{SU}(4)\)自旋-同位旋变换下的不变性。另一方面,统一性明确地打破了手性对称性。这两者在各自的精确对称极限上似乎是不相容的。在统一展开中使用摄动介子\({\upchi }\textrm{EFT}\)解决了统一窗口(相移\(45^\circ \lesssim \delta (k)\lesssim 135^\circ \))中的明显冲突,即在低能核系统最相关的动量\(k\approx m_\pi \)周围。它唯一的LO尺度是散射动量;NLO只增加了散射长度、有效距离和非迭代单介子交换(OPE);和\(\textrm{N}^{2}\) LO只迭代一次的OPE。在\({\phantom {0}}^{1}\textrm{S}_{0}\)频道的协议很好。显然,即使在\(k\approx 100\;\textrm{MeV}\),也可以通过在\(\textrm{N}^{2}\) LO只取OPE的中心部分来弥补\({\phantom {0}}^{3}\textrm{S}_{1}\)通道中的巨大差异。与张量部分不同,它在\({\phantom {0}}^{1}\textrm{S}_{0}\)和\({\phantom {0}}^{3}\textrm{S}_{1}\)通道中是相同的。然后,两个通道在相互一致的定量理论不确定性估计内很好地匹配经验相移和极点参数。即使对于\(k\gtrsim m_\pi \), π介子效应也很小。经验分解尺度与\(\overline{\Lambda }_{\textrm{NN}}=\frac{16\pi f_\pi ^2}{g_A^2M}\approx 300\;\textrm{MeV}\)一致,其中迭代的OPE不受抑制。因此我们推测:统一展开中的共形对称和Wigner对称都表现出持久性,即两者结合的足迹即使对于\(k\gtrsim m_\pi \)也占主导地位,并且比手性对称更相关,因此OPE的张量/Wigner- \(\textrm{SU}(4)\)对称性破缺部分不会在\(\textrm{N}^{3}\) LO之前进入。我们还讨论了在大- \(N_C\)膨胀中与张量相互作用强度有关的纠缠和冲突的可能解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal A
The European Physical Journal A 物理-物理:核物理
CiteScore
5.00
自引率
18.50%
发文量
216
审稿时长
3-8 weeks
期刊介绍: Hadron Physics Hadron Structure Hadron Spectroscopy Hadronic and Electroweak Interactions of Hadrons Nonperturbative Approaches to QCD Phenomenological Approaches to Hadron Physics Nuclear and Quark Matter Heavy-Ion Collisions Phase Diagram of the Strong Interaction Hard Probes Quark-Gluon Plasma and Hadronic Matter Relativistic Transport and Hydrodynamics Compact Stars Nuclear Physics Nuclear Structure and Reactions Few-Body Systems Radioactive Beams Electroweak Interactions Nuclear Astrophysics Article Categories Letters (Open Access) Regular Articles New Tools and Techniques Reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信