Baskaran Mohan Dass, Ramya Padmanaban, Aparna Mahalingam, Neeshma Maniprakundil, Harshal Agarwal, Sreekuttan M. Unni, Vishal M. Dhavale and Santoshkumar D. Bhat
{"title":"Short-side-chain composite membranes with polyaminobenzene sulfonic acid-enriched single-walled carbon nanotubes for polymer electrolyte fuel cells","authors":"Baskaran Mohan Dass, Ramya Padmanaban, Aparna Mahalingam, Neeshma Maniprakundil, Harshal Agarwal, Sreekuttan M. Unni, Vishal M. Dhavale and Santoshkumar D. Bhat","doi":"10.1039/D5LP00172B","DOIUrl":null,"url":null,"abstract":"<p >This study reports the fabrication of composite membranes based on short-side-chain perfluorosulfonic acid (SSC-PFSA) polymers reinforced with polyaminobenzene sulfonic acid-functionalized single-walled carbon nanotubes (PABS-f-SWCNTs) for enhanced polymer electrolyte membrane fuel cell (PEMFC) performance. The dual-functionalized SWCNTs, enriched with –SO<small><sub>3</sub></small>H and –NH<small><sub>2</sub></small> groups, were uniformly dispersed within the SSC-PFSA matrix, promoting dipolar interactions and efficient proton conduction pathways. Comprehensive characterization confirmed improved ion exchange capacity, water uptake, thermal stability, and proton conductivity, with the 0.5 wt% PABS-f-SWCNT composite membrane exhibiting optimal performance. Under fuel cell operating conditions, this membrane demonstrated a peak power density of 1707 mW cm<small><sup>−2</sup></small> at 100% RH and sustained high current density at reduced humidity, outperforming the pristine SSC-PFSA membrane. The findings highlight the synergistic role of zwitterionic functional groups and nanotube reinforcement in advancing next-generation PEMFC membrane technology.</p>","PeriodicalId":101139,"journal":{"name":"RSC Applied Polymers","volume":" 5","pages":" 1376-1384"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/lp/d5lp00172b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Applied Polymers","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/lp/d5lp00172b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study reports the fabrication of composite membranes based on short-side-chain perfluorosulfonic acid (SSC-PFSA) polymers reinforced with polyaminobenzene sulfonic acid-functionalized single-walled carbon nanotubes (PABS-f-SWCNTs) for enhanced polymer electrolyte membrane fuel cell (PEMFC) performance. The dual-functionalized SWCNTs, enriched with –SO3H and –NH2 groups, were uniformly dispersed within the SSC-PFSA matrix, promoting dipolar interactions and efficient proton conduction pathways. Comprehensive characterization confirmed improved ion exchange capacity, water uptake, thermal stability, and proton conductivity, with the 0.5 wt% PABS-f-SWCNT composite membrane exhibiting optimal performance. Under fuel cell operating conditions, this membrane demonstrated a peak power density of 1707 mW cm−2 at 100% RH and sustained high current density at reduced humidity, outperforming the pristine SSC-PFSA membrane. The findings highlight the synergistic role of zwitterionic functional groups and nanotube reinforcement in advancing next-generation PEMFC membrane technology.