{"title":"Three-Dimensional Printed mm-Wave Monolithic Waveguide Twists: End-to-End Manufacturing and Surface-Treatment Solutions","authors":"Lu Qian;Talal Skaik;Yi-Wen Wu;Yi Wang","doi":"10.1109/TMTT.2025.3577733","DOIUrl":null,"url":null,"abstract":"This article presents an end-to-end manufacturing and post-processing solution for 3-D-printed millimeter-wave (mm-Wave) monolithic waveguide (WG) components. A high-precision micro laser sintering (MLS) process, two internal surface polishing methods—abrasive flow machining (AFM) and Hirtisation—and an electroless gold plating process are combined to address the surface quality challenges commonly associated with current 3-D-printed mm-Wave components. This is the first demonstration of the two polishing techniques on mm-Wave devices. An experimental study was conducted on two mm-Wave WG twists for WR-15 and WR-5 bands, respectively. The impact of the surface treatment processes on both mechanical and electrical properties was investigated. The surface roughness of both WG twists was reduced to below <inline-formula> <tex-math>$1~\\mu $ </tex-math></inline-formula>m. For the WR-15 WG twist, the dissipative attenuation factor ranged from 5.4 to 2.7 dB/m, with a worst case return loss of 30 dB. For the WR-05 WG twist, the dissipative attenuation factor ranged from 17 to 10 dB/m, with a worst case return loss of 14 dB. The significant improvement in insertion losses (ILs) demonstrates the effectiveness of the two surface treatment methods, enabling complex monolithic mm-Wave WG components with enhanced surface quality.","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"73 9","pages":"5909-5917"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Microwave Theory and Techniques","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11044879/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents an end-to-end manufacturing and post-processing solution for 3-D-printed millimeter-wave (mm-Wave) monolithic waveguide (WG) components. A high-precision micro laser sintering (MLS) process, two internal surface polishing methods—abrasive flow machining (AFM) and Hirtisation—and an electroless gold plating process are combined to address the surface quality challenges commonly associated with current 3-D-printed mm-Wave components. This is the first demonstration of the two polishing techniques on mm-Wave devices. An experimental study was conducted on two mm-Wave WG twists for WR-15 and WR-5 bands, respectively. The impact of the surface treatment processes on both mechanical and electrical properties was investigated. The surface roughness of both WG twists was reduced to below $1~\mu $ m. For the WR-15 WG twist, the dissipative attenuation factor ranged from 5.4 to 2.7 dB/m, with a worst case return loss of 30 dB. For the WR-05 WG twist, the dissipative attenuation factor ranged from 17 to 10 dB/m, with a worst case return loss of 14 dB. The significant improvement in insertion losses (ILs) demonstrates the effectiveness of the two surface treatment methods, enabling complex monolithic mm-Wave WG components with enhanced surface quality.
期刊介绍:
The IEEE Transactions on Microwave Theory and Techniques focuses on that part of engineering and theory associated with microwave/millimeter-wave components, devices, circuits, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, and industrial, activities. Microwave theory and techniques relates to electromagnetic waves usually in the frequency region between a few MHz and a THz; other spectral regions and wave types are included within the scope of the Society whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.