Exosome Biosensor Based on Quantum Dots-Modified Field Effect Transistor

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jingqiu Chen;Qing Huang;Jing Huang;Tucan Chen;Lanpeng Guo;Yunong Zhao;Dandan Li;Wenjian Zhang;Huayao Li;Yang Zhang;Liang Hu;Huan Liu
{"title":"Exosome Biosensor Based on Quantum Dots-Modified Field Effect Transistor","authors":"Jingqiu Chen;Qing Huang;Jing Huang;Tucan Chen;Lanpeng Guo;Yunong Zhao;Dandan Li;Wenjian Zhang;Huayao Li;Yang Zhang;Liang Hu;Huan Liu","doi":"10.1109/JSEN.2025.3593869","DOIUrl":null,"url":null,"abstract":"The escalating demand for high-throughput and miniaturized biosensors has spurred significant advancements in biosensor chips. However, challenges remain in achieving high-sensitivity and specificity in miniaturized devices. Herein, we construct a sensitive exosome biosensor based on quantum dots (QDs)-modified field-effect transistor. PbS QDs were drop-coated onto the gate of a high-electron mobility transistor (HEMT), followed by surface modification with CD63 antibodies (anti-CD63) through a ligand exchange strategy, and subsequent bovine serum albumin (BSA) blocking treatment. Exosomes with CD63 proteins enriched in the surface were isolated from MCF-7 breast cancer cell lines to serve as target analytes. The specific binding events between the CD63 antigen and antibody capture exosomes onto the gate of HEMT, affecting the output current (<inline-formula> <tex-math>${I}_{\\text {D}}\\text {)}$ </tex-math></inline-formula>. The synergy of the capacitance coupling effect of the modification layer and the intrinsic signal amplification capability of HEMT assists in significantly modulating the 2-D electron gas (2DEG), resulting in amplified <inline-formula> <tex-math>${I}_{\\text {D}}$ </tex-math></inline-formula>. With constant gate voltage applied, the <inline-formula> <tex-math>${I}_{\\text {D}}$ </tex-math></inline-formula> of the biosensor sensitively increases with exosome concentration within a wide range of <inline-formula> <tex-math>$10^{{5}}$ </tex-math></inline-formula>–<inline-formula> <tex-math>$10^{{9}}$ </tex-math></inline-formula> particles/mL at <inline-formula> <tex-math>${V}_{\\text {D}} =3.5$ </tex-math></inline-formula> V, and the limit of detection (LOD) is estimated to be <inline-formula> <tex-math>$9\\times 10^{{4}}$ </tex-math></inline-formula> particles/mL. This exosome biosensor demonstrates its potential for clinical applicability and paves the way for the development of miniaturized exosome biosensor chips.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 18","pages":"34355-34362"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11121576/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating demand for high-throughput and miniaturized biosensors has spurred significant advancements in biosensor chips. However, challenges remain in achieving high-sensitivity and specificity in miniaturized devices. Herein, we construct a sensitive exosome biosensor based on quantum dots (QDs)-modified field-effect transistor. PbS QDs were drop-coated onto the gate of a high-electron mobility transistor (HEMT), followed by surface modification with CD63 antibodies (anti-CD63) through a ligand exchange strategy, and subsequent bovine serum albumin (BSA) blocking treatment. Exosomes with CD63 proteins enriched in the surface were isolated from MCF-7 breast cancer cell lines to serve as target analytes. The specific binding events between the CD63 antigen and antibody capture exosomes onto the gate of HEMT, affecting the output current ( ${I}_{\text {D}}\text {)}$ . The synergy of the capacitance coupling effect of the modification layer and the intrinsic signal amplification capability of HEMT assists in significantly modulating the 2-D electron gas (2DEG), resulting in amplified ${I}_{\text {D}}$ . With constant gate voltage applied, the ${I}_{\text {D}}$ of the biosensor sensitively increases with exosome concentration within a wide range of $10^{{5}}$ $10^{{9}}$ particles/mL at ${V}_{\text {D}} =3.5$ V, and the limit of detection (LOD) is estimated to be $9\times 10^{{4}}$ particles/mL. This exosome biosensor demonstrates its potential for clinical applicability and paves the way for the development of miniaturized exosome biosensor chips.
基于量子点修正场效应晶体管的外泌体生物传感器
对高通量和小型化生物传感器的不断升级的需求刺激了生物传感器芯片的重大进步。然而,在实现小型化设备的高灵敏度和特异性方面仍然存在挑战。在此,我们构建了一个基于量子点修饰场效应晶体管的灵敏外泌体生物传感器。将PbS量子点滴涂在高电子迁移率晶体管(HEMT)的栅极上,然后通过配体交换策略用CD63抗体(抗CD63)对其表面进行修饰,随后进行牛血清白蛋白(BSA)阻断处理。从MCF-7乳腺癌细胞系中分离出表面富集CD63蛋白的外泌体作为靶分析物。CD63抗原与抗体之间的特异性结合事件将外泌体捕获到HEMT的门上,影响输出电流(${I}_{\text {D}}\text{)}$。修饰层的电容耦合效应与HEMT的固有信号放大能力协同作用,有助于显著调制二维电子气体(2DEG),从而产生放大的${I}_{\text {D}}$。当栅极电压恒定时,该生物传感器的${I}_{\text {D}}$在${V}_{\text {D}} =3.5$ V时,随着外泌体浓度在$10^{{5}}$ - $10^{{9}}$粒子/mL范围内敏感地增加,检测限(LOD)估计为$9\乘以10^{{4}}$粒子/mL。该外泌体生物传感器显示了其临床应用潜力,为小型化外泌体生物传感器芯片的开发铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信