A 247–272-GHz SiGe Frequency Doubler With 8.2-dBm Psat Enhanced by Optimized Fundamental Load Impedance and Hybrid-Mode Driver Amplifier

IF 4.5 1区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zuojun Wang;Zekun Li;Xiaoyue Xia;Jiayang Yu;Peigen Zhou;Jixin Chen;Yongxin Guo;Wei Hong
{"title":"A 247–272-GHz SiGe Frequency Doubler With 8.2-dBm Psat Enhanced by Optimized Fundamental Load Impedance and Hybrid-Mode Driver Amplifier","authors":"Zuojun Wang;Zekun Li;Xiaoyue Xia;Jiayang Yu;Peigen Zhou;Jixin Chen;Yongxin Guo;Wei Hong","doi":"10.1109/TMTT.2025.3559956","DOIUrl":null,"url":null,"abstract":"This article presents the analysis, design, and implementation of an integrated sub-THz frequency doubler. Using the VBIC model of the heterojunction bipolar transistor (HBT), we optimize the intrinsic base-emitter and collector-emitter voltage waveforms to maximize the second harmonic output power and further derive the optimal external input power sources and load terminals. We demonstrate that maximizing the second harmonic output power requires a purely capacitive fundamental load impedance. Furthermore, our analysis shows that applying optimal second harmonic input power can further enhance the second harmonic output power. To validate the theory, a frequency doubler is designed and fabricated using a 130-nm SiGe process. The doubler consists of a common-emitter push-push doubler core with an optimized fundamental load impedance, and a hybrid-mode driver amplifier to deliver both the fundamental and second harmonic input powers. The fabricated doubler chip exhibits a measured maximum saturated output power (<inline-formula> <tex-math>$\\boldsymbol {{P}_{\\textbf {sat}}}$ </tex-math></inline-formula>) of 8.2 dBm, with a measured <inline-formula> <tex-math>$\\boldsymbol {{P}_{\\textbf {sat}}}~3$ </tex-math></inline-formula>-dB bandwidth ranging from 247 to 272 GHz. Compared with state-of-the-art doublers using the same SiGe process, the proposed doubler achieves the highest <inline-formula> <tex-math>$\\boldsymbol {{P}_{\\textbf {sat}}}$ </tex-math></inline-formula> per unit emitter area and demonstrates a 1.6-fold improvement.","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"73 9","pages":"6477-6490"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Microwave Theory and Techniques","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10979699/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents the analysis, design, and implementation of an integrated sub-THz frequency doubler. Using the VBIC model of the heterojunction bipolar transistor (HBT), we optimize the intrinsic base-emitter and collector-emitter voltage waveforms to maximize the second harmonic output power and further derive the optimal external input power sources and load terminals. We demonstrate that maximizing the second harmonic output power requires a purely capacitive fundamental load impedance. Furthermore, our analysis shows that applying optimal second harmonic input power can further enhance the second harmonic output power. To validate the theory, a frequency doubler is designed and fabricated using a 130-nm SiGe process. The doubler consists of a common-emitter push-push doubler core with an optimized fundamental load impedance, and a hybrid-mode driver amplifier to deliver both the fundamental and second harmonic input powers. The fabricated doubler chip exhibits a measured maximum saturated output power ( $\boldsymbol {{P}_{\textbf {sat}}}$ ) of 8.2 dBm, with a measured $\boldsymbol {{P}_{\textbf {sat}}}~3$ -dB bandwidth ranging from 247 to 272 GHz. Compared with state-of-the-art doublers using the same SiGe process, the proposed doubler achieves the highest $\boldsymbol {{P}_{\textbf {sat}}}$ per unit emitter area and demonstrates a 1.6-fold improvement.
基于优化基基负载阻抗和混合模式驱动放大器的4.2 dbm Psat增强247 - 272 ghz SiGe倍频器
本文介绍了一种集成次太赫兹倍频器的分析、设计和实现。利用异质结双极晶体管(HBT)的VBIC模型,优化了基极-发射极和集电极-发射极固有电压波形,以最大限度地提高二次谐波输出功率,并进一步推导出最优的外部输入电源和负载端子。我们证明了最大化二次谐波输出功率需要一个纯容性基波负载阻抗。此外,我们的分析表明,采用最优二次谐波输入功率可以进一步提高二次谐波输出功率。为了验证该理论,采用130纳米SiGe工艺设计并制造了一个倍频器。该倍频器由具有优化基频负载阻抗的共发射极推推式倍频铁芯和提供基频和次谐波输入功率的混合模式驱动放大器组成。所制倍频器芯片的最大饱和输出功率($\boldsymbol {{P}_{\textbf {sat}}}$)为8.2 dBm,带宽范围为$\boldsymbol {{P}_{\textbf {sat}}}}~3$ -dB,范围为247 ~ 272 GHz。与使用相同SiGe工艺的最先进的倍频器相比,所提出的倍频器实现了每单位发射器面积的最高$\boldsymbol {{P}_{\textbf {sat}}}$,并显示出1.6倍的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Microwave Theory and Techniques
IEEE Transactions on Microwave Theory and Techniques 工程技术-工程:电子与电气
CiteScore
8.60
自引率
18.60%
发文量
486
审稿时长
6 months
期刊介绍: The IEEE Transactions on Microwave Theory and Techniques focuses on that part of engineering and theory associated with microwave/millimeter-wave components, devices, circuits, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, and industrial, activities. Microwave theory and techniques relates to electromagnetic waves usually in the frequency region between a few MHz and a THz; other spectral regions and wave types are included within the scope of the Society whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信