Optimization of HBVD-EMAT Based on Orthogonal Experimental and Multilayer Perceptron Fusion Method

IF 5.9 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yanhong Guo;Zenghua Liu;Mengqi Su;Jinjie Cheng;Kunsong Zheng;Yang Zheng;Xin Zhao;Cunfu He
{"title":"Optimization of HBVD-EMAT Based on Orthogonal Experimental and Multilayer Perceptron Fusion Method","authors":"Yanhong Guo;Zenghua Liu;Mengqi Su;Jinjie Cheng;Kunsong Zheng;Yang Zheng;Xin Zhao;Cunfu He","doi":"10.1109/TIM.2025.3608351","DOIUrl":null,"url":null,"abstract":"HBVD-EMAT is an electromagnetic acoustic transducer (EMAT) composed of a Halbach magnet and a variable distance meander-line coil. By introducing a linear frequency-modulated (LFM) signal into the coil, wideband pulse compression surface waves can be generated. This article proposes an optimization method for HBVD-EMAT based on the fusion of orthogonal experiment and a multilayer perceptron (MLP) to enhance its performance in both the time and frequency domains. First, the finite-element simulation method is used to perform a four-factor, five-level orthogonal experiment on the size of the Halbach magnet. Then, the time- and frequency-domain response variables of the signal from the simulation results are extracted to analyze the orthogonal experimental results. The EMAT performance evaluation index is constructed based on this analysis. Finally, the MLP model is established with the performance evaluation index as the objective function. The orthogonal experimental results are used as training data to predict the optimal EMAT factor-level combination corresponding to the maximum objective function. The EMAT detection experimental results show that, compared with the nonoptimized HBVD-EMAT, the increase of incident surface wave generated by the optimized HBVD-EMAT in four response variables is 98%, 26%, 95%, and 10%, respectively. EMAT performance evaluation index is increased from 0.13 to 0.86. After optimization, the signal-to-noise ratio (SNR) of EMAT’s crack defect reflection signal and transmission signal is increased by 11.4 and 12.5 dB, respectively.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-16"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11156129/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

HBVD-EMAT is an electromagnetic acoustic transducer (EMAT) composed of a Halbach magnet and a variable distance meander-line coil. By introducing a linear frequency-modulated (LFM) signal into the coil, wideband pulse compression surface waves can be generated. This article proposes an optimization method for HBVD-EMAT based on the fusion of orthogonal experiment and a multilayer perceptron (MLP) to enhance its performance in both the time and frequency domains. First, the finite-element simulation method is used to perform a four-factor, five-level orthogonal experiment on the size of the Halbach magnet. Then, the time- and frequency-domain response variables of the signal from the simulation results are extracted to analyze the orthogonal experimental results. The EMAT performance evaluation index is constructed based on this analysis. Finally, the MLP model is established with the performance evaluation index as the objective function. The orthogonal experimental results are used as training data to predict the optimal EMAT factor-level combination corresponding to the maximum objective function. The EMAT detection experimental results show that, compared with the nonoptimized HBVD-EMAT, the increase of incident surface wave generated by the optimized HBVD-EMAT in four response variables is 98%, 26%, 95%, and 10%, respectively. EMAT performance evaluation index is increased from 0.13 to 0.86. After optimization, the signal-to-noise ratio (SNR) of EMAT’s crack defect reflection signal and transmission signal is increased by 11.4 and 12.5 dB, respectively.
基于正交实验和多层感知器融合方法的HBVD-EMAT优化
HBVD-EMAT是一种由哈尔巴赫磁铁和可变距离曲线线圈组成的电磁声换能器(EMAT)。通过将线性调频(LFM)信号引入线圈,可以产生宽带脉冲压缩表面波。本文提出了一种基于正交实验和多层感知器(MLP)融合的HBVD-EMAT优化方法,以提高其时域和频域性能。首先,采用有限元模拟方法对哈尔巴赫磁体尺寸进行了四因素五水平正交试验。然后,从仿真结果中提取信号的时域和频域响应变量,对正交实验结果进行分析。在此基础上构建了EMAT绩效评价指标。最后,以绩效评价指标为目标函数,建立了MLP模型。将正交实验结果作为训练数据,预测最大目标函数对应的最优EMAT因子水平组合。EMAT检测实验结果表明,与未优化的HBVD-EMAT相比,优化后的HBVD-EMAT在4个响应变量上产生的入射面波分别增加了98%、26%、95%和10%。EMAT性能评价指标由0.13提高到0.86。优化后,EMAT的裂纹缺陷反射信号和透射信号的信噪比分别提高了11.4 dB和12.5 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Instrumentation and Measurement
IEEE Transactions on Instrumentation and Measurement 工程技术-工程:电子与电气
CiteScore
9.00
自引率
23.20%
发文量
1294
审稿时长
3.9 months
期刊介绍: Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信