Christian Tamantini;Maria Laura Cristofanelli;Francesca Fracasso;Alessandro Umbrico;Gabriella Cortellessa;Andrea Orlandini;Francesca Cordella
{"title":"Physiological Sensor Technologies in Workload Estimation: A Review","authors":"Christian Tamantini;Maria Laura Cristofanelli;Francesca Fracasso;Alessandro Umbrico;Gabriella Cortellessa;Andrea Orlandini;Francesca Cordella","doi":"10.1109/JSEN.2025.3597329","DOIUrl":null,"url":null,"abstract":"Workload estimation is essential for artificial systems designed to assist users across various domains. These systems can provide personalized support by continuously assessing the user’s state and optimizing intervention strategies. Physiological data acquisition through advanced sensors enables objective and real-time workload estimation, offering a more reliable alternative to self-reported measures. Despite the growing interest in workload estimation, existing literature reviews are often domain-specific or focus on cognitive workload only, without providing a comprehensive analysis of methodologies for estimating both physical and cognitive workload across different applications. To address this gap, this systematic review analyzes 35 studies on multimodal physiological monitoring, examining feature extraction methodologies and supervised learning models used for workload estimation. The review identifies key challenges, including the need for standardized protocols, improved generalization across real-world scenarios, and the integration of adaptive artificial intelligence models. It underscores the role of sensor-based workload estimation in healthcare, rehabilitation, and assistive technologies, positioning it as a fundamental component for developing intelligent, user-centered, and adaptive human–machine interaction systems.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 18","pages":"34298-34310"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11126940","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11126940/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Workload estimation is essential for artificial systems designed to assist users across various domains. These systems can provide personalized support by continuously assessing the user’s state and optimizing intervention strategies. Physiological data acquisition through advanced sensors enables objective and real-time workload estimation, offering a more reliable alternative to self-reported measures. Despite the growing interest in workload estimation, existing literature reviews are often domain-specific or focus on cognitive workload only, without providing a comprehensive analysis of methodologies for estimating both physical and cognitive workload across different applications. To address this gap, this systematic review analyzes 35 studies on multimodal physiological monitoring, examining feature extraction methodologies and supervised learning models used for workload estimation. The review identifies key challenges, including the need for standardized protocols, improved generalization across real-world scenarios, and the integration of adaptive artificial intelligence models. It underscores the role of sensor-based workload estimation in healthcare, rehabilitation, and assistive technologies, positioning it as a fundamental component for developing intelligent, user-centered, and adaptive human–machine interaction systems.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice