{"title":"Pulsed HEMT LNA Operation for Qubit Readout","authors":"Yin Zeng;Jörgen Stenarson;Peter Sobis;Jan Grahn","doi":"10.1109/TMTT.2025.3556982","DOIUrl":null,"url":null,"abstract":"Large-scale qubit readout in quantum computing systems requires highly sensitive amplification with minimal power consumption to reduce the thermal load and preserve qubit integrity. We propose a pulse-operated cryogenic low-noise amplifier (LNA) scheme that minimizes the influence of the LNA on qubit operation and reduces power consumption by duty cycling. A modified commercially available cryogenic hybrid LNA based on InP high-electron mobility transistors (HEMTs) has been characterized to demonstrate the feasibility of pulsed operation for qubit readout. The transient noise and gain performance of the LNA were obtained through a cryogenic time domain noise measurement setup with 5-ns time resolution and a measured noise standard deviation (SD) below 0.3 K. The time-domain noise and gain performance of the LNA in response to a square gate voltage waveform were investigated. Through an analysis of the LNA’s recovery limitations, we developed a fast recovery bias strategy leading to the optimization of the gate voltage waveform using a genetic algorithm (GA). This resulted in a strong enhancement of transient noise and gain performance with a recovery time of 35 ns. The drain current transients were measured to calculate the average power consumption of the pulse-operated LNA, which confirmed a reduction in average power consumption proportional to the duty cycle. This work contributes to the development of high-performance and low-power amplifier solutions critical for large-scale qubit readout applications.","PeriodicalId":13272,"journal":{"name":"IEEE Transactions on Microwave Theory and Techniques","volume":"73 9","pages":"6539-6553"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10969553","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Microwave Theory and Techniques","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10969553/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Large-scale qubit readout in quantum computing systems requires highly sensitive amplification with minimal power consumption to reduce the thermal load and preserve qubit integrity. We propose a pulse-operated cryogenic low-noise amplifier (LNA) scheme that minimizes the influence of the LNA on qubit operation and reduces power consumption by duty cycling. A modified commercially available cryogenic hybrid LNA based on InP high-electron mobility transistors (HEMTs) has been characterized to demonstrate the feasibility of pulsed operation for qubit readout. The transient noise and gain performance of the LNA were obtained through a cryogenic time domain noise measurement setup with 5-ns time resolution and a measured noise standard deviation (SD) below 0.3 K. The time-domain noise and gain performance of the LNA in response to a square gate voltage waveform were investigated. Through an analysis of the LNA’s recovery limitations, we developed a fast recovery bias strategy leading to the optimization of the gate voltage waveform using a genetic algorithm (GA). This resulted in a strong enhancement of transient noise and gain performance with a recovery time of 35 ns. The drain current transients were measured to calculate the average power consumption of the pulse-operated LNA, which confirmed a reduction in average power consumption proportional to the duty cycle. This work contributes to the development of high-performance and low-power amplifier solutions critical for large-scale qubit readout applications.
期刊介绍:
The IEEE Transactions on Microwave Theory and Techniques focuses on that part of engineering and theory associated with microwave/millimeter-wave components, devices, circuits, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, and industrial, activities. Microwave theory and techniques relates to electromagnetic waves usually in the frequency region between a few MHz and a THz; other spectral regions and wave types are included within the scope of the Society whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.