Peng Song;Yuening Wang;Yan Gao;Bo Gong;Xin Ni;Zhaoying Zuo;Tao Wu;Xixi Zhu;Qingyun Liu
{"title":"Colorimetric Sensor for Kanamycin Based on Peroxidase-Like Activity of Cu@Sch-HNT","authors":"Peng Song;Yuening Wang;Yan Gao;Bo Gong;Xin Ni;Zhaoying Zuo;Tao Wu;Xixi Zhu;Qingyun Liu","doi":"10.1109/JSEN.2025.3596715","DOIUrl":null,"url":null,"abstract":"This study demonstrates the synthesis of a Cu@Sch-HNT nanocomposite via an oil-bath-assisted approach, exhibiting enhanced peroxidase-mimetic activity. Comprehensive characterization employing electron paramagnetic resonance (EPR) spectroscopy and radical scavenging assays established <inline-formula> <tex-math>${}^{\\bullet }$ </tex-math></inline-formula><inline-formula> <tex-math>${\\mathrm {O}}_{{2}}^{-}$ </tex-math></inline-formula> radicals as the predominant reactive species governing the catalytic mechanism. Optimal enzymatic activity was observed at physiological temperature, indicative of favorable biocompatibility. Capitalizing on these catalytic properties, a rapid colorimetric sensing platform was engineered for kanamycin detection. Quantitative analysis revealed a significant linear correlation between kanamycin concentration and absorbance at 652 nm, with detection limit determination conducted according to standard signal-to-noise ratio criteria. This methodology affords three principal advantages as follows: 1) visual analyte recognition through distinct chromogenic transitions; 2) high sensitivity confirmed by systematic detection limit assessment; and 3) practical utility validated through recovery analyses in complex matrices. The platform demonstrates significant potential for environmental surveillance and biosensing applications, particularly in resource-constrained environments.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 18","pages":"34363-34369"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11124424/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study demonstrates the synthesis of a Cu@Sch-HNT nanocomposite via an oil-bath-assisted approach, exhibiting enhanced peroxidase-mimetic activity. Comprehensive characterization employing electron paramagnetic resonance (EPR) spectroscopy and radical scavenging assays established ${}^{\bullet }$ ${\mathrm {O}}_{{2}}^{-}$ radicals as the predominant reactive species governing the catalytic mechanism. Optimal enzymatic activity was observed at physiological temperature, indicative of favorable biocompatibility. Capitalizing on these catalytic properties, a rapid colorimetric sensing platform was engineered for kanamycin detection. Quantitative analysis revealed a significant linear correlation between kanamycin concentration and absorbance at 652 nm, with detection limit determination conducted according to standard signal-to-noise ratio criteria. This methodology affords three principal advantages as follows: 1) visual analyte recognition through distinct chromogenic transitions; 2) high sensitivity confirmed by systematic detection limit assessment; and 3) practical utility validated through recovery analyses in complex matrices. The platform demonstrates significant potential for environmental surveillance and biosensing applications, particularly in resource-constrained environments.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice