A Terahertz Split Ring Resonator Nanosensor for Cardiac Biomarker Detection

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Bhagwati Sharan;Hadeel Elayan;Anirban Ghosh;Raja Datta;Josep M. Jornet;Raja Manjula
{"title":"A Terahertz Split Ring Resonator Nanosensor for Cardiac Biomarker Detection","authors":"Bhagwati Sharan;Hadeel Elayan;Anirban Ghosh;Raja Datta;Josep M. Jornet;Raja Manjula","doi":"10.1109/JSEN.2025.3594620","DOIUrl":null,"url":null,"abstract":"This article presents a terahertz (THz) metamaterial-based nanosensor employing a split ring resonator (SRR) for the detection of N-terminal pro–B-type natriuretic peptide (NT-proBNP), a cardiac biomarker released in response to increased myocardial pressure and volume overload in the heart. The sensor is designed and simulated in CST Studio to enable real-time detection via changes in the refractive index of NT-proBNP associated with cardiac abnormalities. Validation is performed through equivalent circuit modeling (ECM) using the Advanced Design System (ADS). The nanosensor achieves a sensitivity of 1460 GHz/RIU, a Q-factor of 22.06, and a figure of merit (FOM) of 41.71. Assuming minimally invasive placement in the pericardium, signal attenuation is modeled using a path-loss framework that accounts for the serous and fibrous pericardial layers. Transmission line theory is applied to evaluate the intrinsic impedance, reflection coefficients, and attenuation characteristics of THz waves propagating through cardiac tissue. The model estimates the received power at a nanocontroller located at the fibrous layer and is validated using COMSOL Multiphysics. By leveraging refractive index variations induced by NT-proBNP, this nanosensor enables intrabody THz communication as a diagnostic modality. The platform is particularly suited for detecting conditions such as pericarditis, where biomarker fluctuations and pericardial thickening jointly modulate the THz signal.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 18","pages":"35394-35406"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11119042/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a terahertz (THz) metamaterial-based nanosensor employing a split ring resonator (SRR) for the detection of N-terminal pro–B-type natriuretic peptide (NT-proBNP), a cardiac biomarker released in response to increased myocardial pressure and volume overload in the heart. The sensor is designed and simulated in CST Studio to enable real-time detection via changes in the refractive index of NT-proBNP associated with cardiac abnormalities. Validation is performed through equivalent circuit modeling (ECM) using the Advanced Design System (ADS). The nanosensor achieves a sensitivity of 1460 GHz/RIU, a Q-factor of 22.06, and a figure of merit (FOM) of 41.71. Assuming minimally invasive placement in the pericardium, signal attenuation is modeled using a path-loss framework that accounts for the serous and fibrous pericardial layers. Transmission line theory is applied to evaluate the intrinsic impedance, reflection coefficients, and attenuation characteristics of THz waves propagating through cardiac tissue. The model estimates the received power at a nanocontroller located at the fibrous layer and is validated using COMSOL Multiphysics. By leveraging refractive index variations induced by NT-proBNP, this nanosensor enables intrabody THz communication as a diagnostic modality. The platform is particularly suited for detecting conditions such as pericarditis, where biomarker fluctuations and pericardial thickening jointly modulate the THz signal.
用于心脏生物标志物检测的太赫兹分裂环谐振器纳米传感器
本文介绍了一种基于太赫兹(THz)超材料的纳米传感器,该传感器采用裂环谐振器(SRR)来检测n端前b型利钠肽(NT-proBNP),这是一种心脏生物标志物,在心肌压力增加和心脏容量过载时释放。该传感器是在CST Studio中设计和模拟的,可以通过与心脏异常相关的NT-proBNP折射率的变化进行实时检测。通过使用先进设计系统(ADS)的等效电路建模(ECM)进行验证。该纳米传感器的灵敏度为1460 GHz/RIU, q因子为22.06,性能因数为41.71。假设微创植入心包,信号衰减使用路径损失框架建模,考虑浆液和纤维性心包层。传输线理论用于评估太赫兹波在心脏组织中传播的固有阻抗、反射系数和衰减特性。该模型估计了位于纤维层的纳米控制器的接收功率,并使用COMSOL Multiphysics进行了验证。通过利用NT-proBNP引起的折射率变化,这种纳米传感器使体内太赫兹通信成为一种诊断方式。该平台特别适合检测心包炎等疾病,其中生物标志物波动和心包增厚共同调节太赫兹信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信