GPS/UWB Tightly Coupled Vehicle Cooperative Positioning Based on AOO-CNN- BiGRU-Attention Model

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Wei Sun;Xinyu Qin;Wei Ding;Jingang Zhao;Chen Liang
{"title":"GPS/UWB Tightly Coupled Vehicle Cooperative Positioning Based on AOO-CNN- BiGRU-Attention Model","authors":"Wei Sun;Xinyu Qin;Wei Ding;Jingang Zhao;Chen Liang","doi":"10.1109/JSEN.2025.3596781","DOIUrl":null,"url":null,"abstract":"Accurate relative positioning is essential for the deployment of an intelligent transportation system. However, in complex environments such as urban canyons and tunnels, the global positioning system (GPS) signals are often blocked or interrupted, resulting in decreased or invalid positioning accuracy. To meet the demand for accurate vehicle positioning in complex environments of urban roads, this article proposes a deep learning model for GPS pseudo-range and Doppler shift prediction based on the fusion of the animated oat optimization (AOO), a convolutional neural network (CNN), a bidirectional gated recurrent unit (BiGRU), and an attention mechanism. CNN is applied to capture spatiotemporal features from the input sequence, while BiGRU explores the long-term dependencies in the data. The attention assigns varying weights according to the importance of input data, enabling the model to focus more effectively on critical parts. To improve predictive accuracy, the AOO algorithm is employed for hyperparameter optimization. Then, the predicted GPS pseudo-range and Doppler shift are used for GPS/ultrawide band (UWB) tightly coupled cooperative positioning by utilizing the characteristics of UWB technology that can provide high-precision ranging information. The results of the experiment show that the proposed fusion model improves the relative positioning accuracy by 13%, 29%, 33%, and 50% over CNN-BiGRU-Attention, CNN-BiGRU, BiGRU, and GRU models, respectively, during a GPS signal loss-of-lock environment, which significantly enhances the stability of vehicle positioning in complex environments.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 18","pages":"35312-35322"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11124435/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate relative positioning is essential for the deployment of an intelligent transportation system. However, in complex environments such as urban canyons and tunnels, the global positioning system (GPS) signals are often blocked or interrupted, resulting in decreased or invalid positioning accuracy. To meet the demand for accurate vehicle positioning in complex environments of urban roads, this article proposes a deep learning model for GPS pseudo-range and Doppler shift prediction based on the fusion of the animated oat optimization (AOO), a convolutional neural network (CNN), a bidirectional gated recurrent unit (BiGRU), and an attention mechanism. CNN is applied to capture spatiotemporal features from the input sequence, while BiGRU explores the long-term dependencies in the data. The attention assigns varying weights according to the importance of input data, enabling the model to focus more effectively on critical parts. To improve predictive accuracy, the AOO algorithm is employed for hyperparameter optimization. Then, the predicted GPS pseudo-range and Doppler shift are used for GPS/ultrawide band (UWB) tightly coupled cooperative positioning by utilizing the characteristics of UWB technology that can provide high-precision ranging information. The results of the experiment show that the proposed fusion model improves the relative positioning accuracy by 13%, 29%, 33%, and 50% over CNN-BiGRU-Attention, CNN-BiGRU, BiGRU, and GRU models, respectively, during a GPS signal loss-of-lock environment, which significantly enhances the stability of vehicle positioning in complex environments.
基于AOO-CNN- BiGRU-Attention模型的GPS/UWB紧密耦合车辆协同定位
准确的相对定位对于智能交通系统的部署至关重要。然而,在城市峡谷、隧道等复杂环境中,GPS (global positioning system, GPS)信号经常被阻塞或中断,导致定位精度下降或失效。为了满足城市道路复杂环境下车辆精确定位的需求,本文提出了一种基于动画优化(AOO)、卷积神经网络(CNN)、双向门控循环单元(BiGRU)和注意机制融合的GPS伪距离和多普勒频移深度学习模型。CNN用于从输入序列中捕获时空特征,BiGRU则探索数据中的长期依赖关系。注意力根据输入数据的重要性分配不同的权重,使模型能够更有效地关注关键部分。为了提高预测精度,采用AOO算法进行超参数优化。然后,利用超宽带技术提供高精度测距信息的特点,将预测的GPS伪距离和多普勒频移用于GPS/超宽带紧密耦合协同定位;实验结果表明,在GPS信号失锁环境下,该融合模型相对于CNN-BiGRU- attention、CNN-BiGRU、BiGRU和GRU模型的相对定位精度分别提高了13%、29%、33%和50%,显著提高了车辆在复杂环境下的定位稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信