A Time-to-Digital Converter With Steady Calibration Through Single-Photon Detection

IF 5.9 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Matías Rubén Bolaños;Daniele Vogrig;Paolo Villoresi;Giuseppe Vallone;Andrea Stanco
{"title":"A Time-to-Digital Converter With Steady Calibration Through Single-Photon Detection","authors":"Matías Rubén Bolaños;Daniele Vogrig;Paolo Villoresi;Giuseppe Vallone;Andrea Stanco","doi":"10.1109/TIM.2025.3601244","DOIUrl":null,"url":null,"abstract":"Time-to-digital converters (TDCs) are a crucial tool in a wide array of fields, in particular for quantum communication, where time taggers performance can severely affect the quality of the entire application. Nowadays, FPGA-based TDCs present a viable alternative to ASIC ones, once the nonlinear behavior due to the intrinsic nature of the device is properly mitigated. To compensate for said nonlinearities, a calibration procedure is required, which should be maintained throughout its runtime. Here, we present the design and the demonstration of a TDC that is FPGA-based showing a residual FWHM jitter of 27 ps and scalable for multichannel operation. The target application in quantum key distribution (QKD) is discussed with a calibration method based on the exploitation of single-photon detection that does not require stopping the data acquisition or using any estimation methods, thus increasing accuracy and removing data loss. The calibration was tested in a relevant environment, investigating the behavior of the device between <inline-formula> <tex-math>$5~^{\\circ }$ </tex-math></inline-formula>C and <inline-formula> <tex-math>$80~^{\\circ }$ </tex-math></inline-formula>C. Moreover, our design is capable of continuously streaming up to 12 Mevents/s for up to ~1 week without the TDC overflowing, making it ready for a real-life scenario deployment.","PeriodicalId":13341,"journal":{"name":"IEEE Transactions on Instrumentation and Measurement","volume":"74 ","pages":"1-9"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11153784","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Instrumentation and Measurement","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11153784/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Time-to-digital converters (TDCs) are a crucial tool in a wide array of fields, in particular for quantum communication, where time taggers performance can severely affect the quality of the entire application. Nowadays, FPGA-based TDCs present a viable alternative to ASIC ones, once the nonlinear behavior due to the intrinsic nature of the device is properly mitigated. To compensate for said nonlinearities, a calibration procedure is required, which should be maintained throughout its runtime. Here, we present the design and the demonstration of a TDC that is FPGA-based showing a residual FWHM jitter of 27 ps and scalable for multichannel operation. The target application in quantum key distribution (QKD) is discussed with a calibration method based on the exploitation of single-photon detection that does not require stopping the data acquisition or using any estimation methods, thus increasing accuracy and removing data loss. The calibration was tested in a relevant environment, investigating the behavior of the device between $5~^{\circ }$ C and $80~^{\circ }$ C. Moreover, our design is capable of continuously streaming up to 12 Mevents/s for up to ~1 week without the TDC overflowing, making it ready for a real-life scenario deployment.
基于单光子检测的稳定校准时间-数字转换器
时间-数字转换器(tdc)是广泛领域的关键工具,特别是在量子通信中,时间标记器的性能会严重影响整个应用的质量。如今,基于fpga的tdc提供了ASIC的可行替代方案,一旦由于器件固有性质引起的非线性行为得到适当缓解。为了补偿上述非线性,需要一个校准程序,该程序应在整个运行过程中保持。在这里,我们展示了一个基于fpga的TDC的设计和演示,该TDC显示了27 ps的剩余FWHM抖动,并且可扩展用于多通道操作。讨论了一种基于单光子探测的校准方法在量子密钥分发(QKD)中的应用,该方法不需要停止数据采集或使用任何估计方法,从而提高了精度并消除了数据丢失。校准在相关环境中进行了测试,研究了设备在$5~^{\circ}$ C和$80~^{\circ}$ C之间的行为。此外,我们的设计能够连续流式传输高达12个事件/秒长达1周,而不会出现TDC溢出,使其为实际场景部署做好准备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Instrumentation and Measurement
IEEE Transactions on Instrumentation and Measurement 工程技术-工程:电子与电气
CiteScore
9.00
自引率
23.20%
发文量
1294
审稿时长
3.9 months
期刊介绍: Papers are sought that address innovative solutions to the development and use of electrical and electronic instruments and equipment to measure, monitor and/or record physical phenomena for the purpose of advancing measurement science, methods, functionality and applications. The scope of these papers may encompass: (1) theory, methodology, and practice of measurement; (2) design, development and evaluation of instrumentation and measurement systems and components used in generating, acquiring, conditioning and processing signals; (3) analysis, representation, display, and preservation of the information obtained from a set of measurements; and (4) scientific and technical support to establishment and maintenance of technical standards in the field of Instrumentation and Measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信