Abra Atwood, Michael T. Coe, Christopher Neill, Leonardo Maracahipes‐Santos, Paulo Brando, Shelby H. Riskin, Andrea Castanho, Linda Deegan, Antônio Carlos Silveiro, Marcia N. Macedo
{"title":"Deep Soil Water Reservoirs Modulate Land Use and Drought Effects on the Water Budget of Amazon Headwaters","authors":"Abra Atwood, Michael T. Coe, Christopher Neill, Leonardo Maracahipes‐Santos, Paulo Brando, Shelby H. Riskin, Andrea Castanho, Linda Deegan, Antônio Carlos Silveiro, Marcia N. Macedo","doi":"10.1029/2024wr039729","DOIUrl":null,"url":null,"abstract":"The southeastern Amazon has been transformed by widespread land use and climate changes, altering the hydrologic cycle. In this seasonally dry tropical forest, the soil water reservoir plays a strong role in mediating the water balance by buffering forests during dry seasons and moderate droughts, as well as modulating runoff to streams. Few studies have examined the response of soil water reservoirs to large‐scale forest loss in headwater regions, much less how these changes may influence catchment water balances during droughts. This study compares the water balance of forested and cropland watersheds in the headwaters of the Xingu River basin (Mato Grosso, Brazil). We combined measurements of stream discharge and soil moisture (from 0.3 to 8 m depth) from the 2014–2018 water years, along with remotely sensed precipitation and evapotranspiration (ET) data, comparing normal precipitation years to an extreme drought year. Streams within agricultural catchments had four times higher discharge (29% of total precipitation) than in forested catchments (8%). During normal years, this difference was balanced by differences in ET. We found that groundwater outflow—water that bypasses a catchment without reaching the stream—is a significant water export term under both landcovers (19% in forest; 26% in croplands). However, during drought years, this outflow disappears in forested catchments and decreases in agricultural catchments, suggesting enhanced groundwater uptake by vegetation that diminishes contributions to rivers downstream. Multiyear droughts projected under future climate changes could threaten the soil water reservoir, leaving forests without a critical resource and downstream communities vulnerable to streamflow loss.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"104 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr039729","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The southeastern Amazon has been transformed by widespread land use and climate changes, altering the hydrologic cycle. In this seasonally dry tropical forest, the soil water reservoir plays a strong role in mediating the water balance by buffering forests during dry seasons and moderate droughts, as well as modulating runoff to streams. Few studies have examined the response of soil water reservoirs to large‐scale forest loss in headwater regions, much less how these changes may influence catchment water balances during droughts. This study compares the water balance of forested and cropland watersheds in the headwaters of the Xingu River basin (Mato Grosso, Brazil). We combined measurements of stream discharge and soil moisture (from 0.3 to 8 m depth) from the 2014–2018 water years, along with remotely sensed precipitation and evapotranspiration (ET) data, comparing normal precipitation years to an extreme drought year. Streams within agricultural catchments had four times higher discharge (29% of total precipitation) than in forested catchments (8%). During normal years, this difference was balanced by differences in ET. We found that groundwater outflow—water that bypasses a catchment without reaching the stream—is a significant water export term under both landcovers (19% in forest; 26% in croplands). However, during drought years, this outflow disappears in forested catchments and decreases in agricultural catchments, suggesting enhanced groundwater uptake by vegetation that diminishes contributions to rivers downstream. Multiyear droughts projected under future climate changes could threaten the soil water reservoir, leaving forests without a critical resource and downstream communities vulnerable to streamflow loss.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.