Catalytic manipulation of reversibility and irreversibility in a supramolecular reaction network to control the self-assembly outcome

IF 19.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chem Pub Date : 2025-09-17 DOI:10.1016/j.chempr.2025.102741
Tsukasa Abe, Satoshi Takahashi, Runyu Chai, Hirofumi Sato, Shuichi Hiraoka
{"title":"Catalytic manipulation of reversibility and irreversibility in a supramolecular reaction network to control the self-assembly outcome","authors":"Tsukasa Abe, Satoshi Takahashi, Runyu Chai, Hirofumi Sato, Shuichi Hiraoka","doi":"10.1016/j.chempr.2025.102741","DOIUrl":null,"url":null,"abstract":"Catalysis is a key strategy for enhancing the yields and selectivities of desired products in both living systems and industry. Catalysts do not affect the reaction outcome of simple reversible reactions; they only accelerate equilibration. Herein, we report that catalysis greatly improves the self-assembly yield. In the presence of ReO<sub>4</sub><sup>−</sup> as the catalyst, the M<sub>6</sub>L<sub>4</sub> square-based pyramid (<strong>SP</strong>) was almost quantitatively assembled, whereas the yield was only 24% without catalysis. Experimental and theoretical analyses of the self-assembly revealed that M<sub>3</sub>L<sub>3</sub> and M<sub>4</sub>L<sub>3</sub> triangle species were trapped without ReO<sub>4</sub><sup>−</sup>, that in the presence of the catalyst, the conversion of the trapped species was indirectly promoted by greater acceleration of the late stage of the self-assembly, and that local reaction loops involving <strong>SP</strong> prevented global equilibration to attain a metastable state.","PeriodicalId":268,"journal":{"name":"Chem","volume":"94 1","pages":""},"PeriodicalIF":19.6000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2025.102741","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Catalysis is a key strategy for enhancing the yields and selectivities of desired products in both living systems and industry. Catalysts do not affect the reaction outcome of simple reversible reactions; they only accelerate equilibration. Herein, we report that catalysis greatly improves the self-assembly yield. In the presence of ReO4 as the catalyst, the M6L4 square-based pyramid (SP) was almost quantitatively assembled, whereas the yield was only 24% without catalysis. Experimental and theoretical analyses of the self-assembly revealed that M3L3 and M4L3 triangle species were trapped without ReO4, that in the presence of the catalyst, the conversion of the trapped species was indirectly promoted by greater acceleration of the late stage of the self-assembly, and that local reaction loops involving SP prevented global equilibration to attain a metastable state.

Abstract Image

在超分子反应网络中催化操纵可逆性和不可逆性以控制自组装结果
在生命系统和工业中,催化是提高产量和所需产品选择性的关键策略。催化剂不影响简单可逆反应的反应结果;它们只会加速平衡。在此,我们报告了催化大大提高了自组装产率。在ReO4−为催化剂的情况下,M6L4方基金字塔(SP)几乎可以定量组装,而在没有催化的情况下,产率仅为24%。实验和理论分析表明,在不含ReO4−的情况下,M3L3和M4L3三角形物质被捕获,在催化剂存在的情况下,自组装后期较大的加速间接促进了被捕获物质的转化,并且涉及SP的局部反应环路阻碍了整体平衡达到亚稳态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信