To Heal or Not to Heal?: 2. The Moment–Recurrence Time Behavior of Repeating Earthquakes in the 2011 Prague, Oklahoma Aftershock Sequence Is Consistent With Laboratory Healing Rates
Kristina K. Okamoto, Heather M. Savage, Elizabeth S. Cochran, Emily E. Brodsky, Rachel Abercrombie
{"title":"To Heal or Not to Heal?: 2. The Moment–Recurrence Time Behavior of Repeating Earthquakes in the 2011 Prague, Oklahoma Aftershock Sequence Is Consistent With Laboratory Healing Rates","authors":"Kristina K. Okamoto, Heather M. Savage, Elizabeth S. Cochran, Emily E. Brodsky, Rachel Abercrombie","doi":"10.1029/2024JB030548","DOIUrl":null,"url":null,"abstract":"<p>The timing and failure conditions of an earthquake are governed by the interplay between fault reloading and restrengthening. The moment-recurrence time behavior of repeating earthquakes can give observational estimates of fault healing rates; however, it is difficult to link these observed healing rates to laboratory studies of frictional healing in part because of uncertainty in lithology. Here, we study the 2011 Prague earthquake sequence, which includes repeating earthquakes in the Arbuckle group and the granitic basement, and compare them to laboratory experiments on samples of the Arbuckle and Troy granite (representative of the basement rock) (Okamoto et al., 2025, https://doi.org/10.1029/2024JB030573). We find three spatially distinct groups of repeating earthquakes with different moment-recurrence behavior: (a) constant moment-recurrence time in the Arbuckle group, (b) scattered moment-recurrence time at the intersection of the foreshock-mainshock fault in the granitic basement, and (c) moment-predictable behavior outside of the foreshock-mainshock fault intersection also in the granitic basement. Our observation of stagnant healing for repeating sequences in the Arbuckle group is consistent with laboratory observations of low healing rates for moderately high pore fluid pressures in Arbuckle samples. For the moment-predictable group, the source radius that is required in order to match healing rates is consistent with source radius estimations when taking into account reasonable attenuation of the <i>P-</i>pulse width. Overall, we observe diverse healing behaviors in the seismic families that are consistent with laboratory healing rates, providing seismic evidence that contact-scale frictional mechanisms are relevant to large-scale earthquake dynamics.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"130 9","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB030548","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024JB030548","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The timing and failure conditions of an earthquake are governed by the interplay between fault reloading and restrengthening. The moment-recurrence time behavior of repeating earthquakes can give observational estimates of fault healing rates; however, it is difficult to link these observed healing rates to laboratory studies of frictional healing in part because of uncertainty in lithology. Here, we study the 2011 Prague earthquake sequence, which includes repeating earthquakes in the Arbuckle group and the granitic basement, and compare them to laboratory experiments on samples of the Arbuckle and Troy granite (representative of the basement rock) (Okamoto et al., 2025, https://doi.org/10.1029/2024JB030573). We find three spatially distinct groups of repeating earthquakes with different moment-recurrence behavior: (a) constant moment-recurrence time in the Arbuckle group, (b) scattered moment-recurrence time at the intersection of the foreshock-mainshock fault in the granitic basement, and (c) moment-predictable behavior outside of the foreshock-mainshock fault intersection also in the granitic basement. Our observation of stagnant healing for repeating sequences in the Arbuckle group is consistent with laboratory observations of low healing rates for moderately high pore fluid pressures in Arbuckle samples. For the moment-predictable group, the source radius that is required in order to match healing rates is consistent with source radius estimations when taking into account reasonable attenuation of the P-pulse width. Overall, we observe diverse healing behaviors in the seismic families that are consistent with laboratory healing rates, providing seismic evidence that contact-scale frictional mechanisms are relevant to large-scale earthquake dynamics.
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.