Structural and Kinetic Profiling of Rolling Circle Amplification via Solid-State Nanopore Sensing Using miR-21 as a Model

IF 9.1 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Kawin Loha, , , Thitikorn Boonkoom, , , Harit Pitakjakpipop, , , Ibrar Alam, , , Alongkot Treetong, , , Poramin Boonbanjong, , , Itthi Chatnuntawech, , , Surat Teerapittayanon, , , Ulrich F. Keyser, , , Albert Schulte, , and , Deanpen Japrung*, 
{"title":"Structural and Kinetic Profiling of Rolling Circle Amplification via Solid-State Nanopore Sensing Using miR-21 as a Model","authors":"Kawin Loha,&nbsp;, ,&nbsp;Thitikorn Boonkoom,&nbsp;, ,&nbsp;Harit Pitakjakpipop,&nbsp;, ,&nbsp;Ibrar Alam,&nbsp;, ,&nbsp;Alongkot Treetong,&nbsp;, ,&nbsp;Poramin Boonbanjong,&nbsp;, ,&nbsp;Itthi Chatnuntawech,&nbsp;, ,&nbsp;Surat Teerapittayanon,&nbsp;, ,&nbsp;Ulrich F. Keyser,&nbsp;, ,&nbsp;Albert Schulte,&nbsp;, and ,&nbsp;Deanpen Japrung*,&nbsp;","doi":"10.1021/acssensors.5c02039","DOIUrl":null,"url":null,"abstract":"<p >Rolling Circle Amplification (RCA) is a robust isothermal nucleic acid amplification technique widely used in molecular diagnostics. In this study, we combine RCA with solid-state nanopore sensing to monitor the amplification process at the single-molecule level using miR-21 as a model biomarker. This label-free platform enables detailed analysis of amplification kinetics and structural transitions over time. Changes in translocation dwell time and current blockage were evaluated across RCA incubation periods (30 min, 1 h, 2 h), revealing time-dependent increases consistent with the generation of longer and more complex DNA concatemers. These findings were validated by Urea-PAGE and atomic force microscopy (AFM), while Mfold-based secondary structure predictions further supported the evolution of more stable and folded configurations. Additionally, a custom-developed signal extraction application facilitated reproducible event classification and visualization. Overall, this integrated approach provides new insights into RCA behavior and highlights the potential of nanopore-based sensing for the development of sensitive, structure-resolved diagnostic tools.</p>","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"10 9","pages":"7014–7024"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acssensors.5c02039","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssensors.5c02039","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rolling Circle Amplification (RCA) is a robust isothermal nucleic acid amplification technique widely used in molecular diagnostics. In this study, we combine RCA with solid-state nanopore sensing to monitor the amplification process at the single-molecule level using miR-21 as a model biomarker. This label-free platform enables detailed analysis of amplification kinetics and structural transitions over time. Changes in translocation dwell time and current blockage were evaluated across RCA incubation periods (30 min, 1 h, 2 h), revealing time-dependent increases consistent with the generation of longer and more complex DNA concatemers. These findings were validated by Urea-PAGE and atomic force microscopy (AFM), while Mfold-based secondary structure predictions further supported the evolution of more stable and folded configurations. Additionally, a custom-developed signal extraction application facilitated reproducible event classification and visualization. Overall, this integrated approach provides new insights into RCA behavior and highlights the potential of nanopore-based sensing for the development of sensitive, structure-resolved diagnostic tools.

以miR-21为模型的固态纳米孔传感滚动圆放大的结构和动力学分析。
滚动循环扩增(RCA)是一种广泛应用于分子诊断的稳健性等温核酸扩增技术。在本研究中,我们将RCA与固态纳米孔传感结合起来,以miR-21作为模型生物标志物,在单分子水平上监测扩增过程。这个无标签的平台可以详细分析放大动力学和结构转变随时间的变化。在RCA孵育期间(30分钟,1小时,2小时)评估易位停留时间和电流阻塞的变化,揭示了时间依赖性的增加,与更长更复杂的DNA串联体的产生一致。这些发现通过尿素- page和原子力显微镜(AFM)得到了验证,而基于mfold的二级结构预测进一步支持了更稳定和折叠构型的进化。此外,定制开发的信号提取应用程序促进了可重复的事件分类和可视化。总的来说,这种综合方法为RCA行为提供了新的见解,并强调了基于纳米孔的传感技术在开发敏感的、结构分辨的诊断工具方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信