Xilai Li,Xiaosong Li,Tianshu Tan,Huafeng Li,Tao Ye
{"title":"UMCFuse: A Unified Multiple Complex Scenes Infrared and Visible Image Fusion Framework.","authors":"Xilai Li,Xiaosong Li,Tianshu Tan,Huafeng Li,Tao Ye","doi":"10.1109/tip.2025.3607623","DOIUrl":null,"url":null,"abstract":"Infrared and visible image fusion has emerged as a prominent research area in computer vision. However, little attention has been paid to complex scenes fusion, leading to sub-optimal results under interference. To fill this gap, we propose a unified framework for infrared and visible images fusion in complex scenes, termed UMCFuse. Specifically, we classify the pixels of visible images from the degree of scattering of light transmission, allowing us to separate fine details from overall intensity. Maintaining a balance between interference removal and detail preservation is essential for the generalization capacity of the proposed method. Therefore, we propose an adaptive denoising strategy for the fusion of detail layers. Meanwhile, we fuse the energy features from different modalities by analyzing them from multiple directions. Extensive fusion experiments on real and synthetic complex scenes datasets cover adverse weather conditions, noise, blur, overexposure, fire, as well as downstream tasks including semantic segmentation, object detection, salient object detection, and depth estimation, consistently indicate the superiority of the proposed method compared with the recent representative methods. Our code is available at https://github.com/ixilai/UMCFuse.","PeriodicalId":13217,"journal":{"name":"IEEE Transactions on Image Processing","volume":"64 1","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tip.2025.3607623","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Infrared and visible image fusion has emerged as a prominent research area in computer vision. However, little attention has been paid to complex scenes fusion, leading to sub-optimal results under interference. To fill this gap, we propose a unified framework for infrared and visible images fusion in complex scenes, termed UMCFuse. Specifically, we classify the pixels of visible images from the degree of scattering of light transmission, allowing us to separate fine details from overall intensity. Maintaining a balance between interference removal and detail preservation is essential for the generalization capacity of the proposed method. Therefore, we propose an adaptive denoising strategy for the fusion of detail layers. Meanwhile, we fuse the energy features from different modalities by analyzing them from multiple directions. Extensive fusion experiments on real and synthetic complex scenes datasets cover adverse weather conditions, noise, blur, overexposure, fire, as well as downstream tasks including semantic segmentation, object detection, salient object detection, and depth estimation, consistently indicate the superiority of the proposed method compared with the recent representative methods. Our code is available at https://github.com/ixilai/UMCFuse.
期刊介绍:
The IEEE Transactions on Image Processing delves into groundbreaking theories, algorithms, and structures concerning the generation, acquisition, manipulation, transmission, scrutiny, and presentation of images, video, and multidimensional signals across diverse applications. Topics span mathematical, statistical, and perceptual aspects, encompassing modeling, representation, formation, coding, filtering, enhancement, restoration, rendering, halftoning, search, and analysis of images, video, and multidimensional signals. Pertinent applications range from image and video communications to electronic imaging, biomedical imaging, image and video systems, and remote sensing.