Non-Invasive Precise Classification of Glomerular Diseases in Urine Based on Hyperspectral Technology.

IF 2.3
Shenghan Qu, Chongxuan Tian, Guixi Zheng, Zhengshuai Jiang, Xiaming Gu, Jiaxin Lv, Donghai Wang, Wei Li
{"title":"Non-Invasive Precise Classification of Glomerular Diseases in Urine Based on Hyperspectral Technology.","authors":"Shenghan Qu, Chongxuan Tian, Guixi Zheng, Zhengshuai Jiang, Xiaming Gu, Jiaxin Lv, Donghai Wang, Wei Li","doi":"10.1002/jbio.202500208","DOIUrl":null,"url":null,"abstract":"<p><p>Glomerular diseases, characterized by primary glomerular injury, impose a significant global health burden. While renal biopsy remains the diagnostic gold standard, this study explores hyperspectral imaging (HSI) as a novel non-invasive methodology combining spectral and spatial analysis. Urine samples from patients with four glomerular disease subtypes (Minimal Change Disease, Diabetic Nephropathy, Membranous Nephropathy, IgA Nephropathy; 40 samples/subtype) underwent HSI acquisition. Using dimensionality-reduced HSI spectral data, we developed a ResNet-50 classification model. The model achieved high performance with 96.8% average five-fold cross-validation accuracy and a 0.982 AUC, confirming accurate multiclass differentiation feasibility from limited samples. Comparative analysis validated the superior efficacy of the integrated ResNet-50 and HSI approach for this classification task.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202500208"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202500208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Glomerular diseases, characterized by primary glomerular injury, impose a significant global health burden. While renal biopsy remains the diagnostic gold standard, this study explores hyperspectral imaging (HSI) as a novel non-invasive methodology combining spectral and spatial analysis. Urine samples from patients with four glomerular disease subtypes (Minimal Change Disease, Diabetic Nephropathy, Membranous Nephropathy, IgA Nephropathy; 40 samples/subtype) underwent HSI acquisition. Using dimensionality-reduced HSI spectral data, we developed a ResNet-50 classification model. The model achieved high performance with 96.8% average five-fold cross-validation accuracy and a 0.982 AUC, confirming accurate multiclass differentiation feasibility from limited samples. Comparative analysis validated the superior efficacy of the integrated ResNet-50 and HSI approach for this classification task.

基于高光谱技术的尿肾小球疾病无创精确分类
以原发性肾小球损伤为特征的肾小球疾病造成了重大的全球健康负担。虽然肾活检仍然是诊断的金标准,但本研究探索了高光谱成像(HSI)作为一种结合光谱和空间分析的新型非侵入性方法。四种肾小球疾病亚型(微小改变疾病、糖尿病肾病、膜性肾病、IgA肾病;40个样本/亚型)患者的尿液样本进行了HSI采集。利用降维的HSI光谱数据,我们开发了一个ResNet-50分类模型。该模型获得了96.8%的平均五倍交叉验证准确率和0.982的AUC,证实了在有限样本中准确区分多类的可行性。对比分析验证了综合ResNet-50和HSI方法在该分类任务中的优越疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信