{"title":"Spatially structured models of viral dynamics: a scoping review.","authors":"Thomas Williams, James M McCaw, James M Osborne","doi":"10.1128/mmbr.00283-24","DOIUrl":null,"url":null,"abstract":"<p><p>SUMMARYThere is growing recognition in both the experimental and modeling literature of the importance of spatial structure to the dynamics of viral infections within the host. Aided by the evolution of computing power and motivated by recent biological insights, there has been an explosion of new, spatially explicit models for within-host viral dynamics in recent years. This development has only been accelerated in the wake of the COVID-19 pandemic. Spatially structured models offer improved biological realism and can account for dynamics that cannot be well-described by conventional, mean-field approaches. However, despite their growing popularity, spatially structured models of viral dynamics are underused in biological applications. One major obstacle to the wider application of such models is the huge variety in approaches taken, with little consensus as to which features should be included and how they should be implemented for a given biological context. Previous reviews of the field have focused on specific modeling frameworks or on models for particular viral species. Here, we instead apply a scoping review approach to the literature of spatially structured viral dynamics models as a whole to provide an exhaustive update of the state of the field. Our analysis is structured along two axes, methodology and viral species, in order to examine the breadth of techniques used and the requirements of different biological applications. We then discuss the contributions of mathematical and computational modeling to our understanding of key spatially structured aspects of viral dynamics and suggest key themes for future model development to improve robustness and biological utility.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0028324"},"PeriodicalIF":7.8000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Molecular Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mmbr.00283-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
SUMMARYThere is growing recognition in both the experimental and modeling literature of the importance of spatial structure to the dynamics of viral infections within the host. Aided by the evolution of computing power and motivated by recent biological insights, there has been an explosion of new, spatially explicit models for within-host viral dynamics in recent years. This development has only been accelerated in the wake of the COVID-19 pandemic. Spatially structured models offer improved biological realism and can account for dynamics that cannot be well-described by conventional, mean-field approaches. However, despite their growing popularity, spatially structured models of viral dynamics are underused in biological applications. One major obstacle to the wider application of such models is the huge variety in approaches taken, with little consensus as to which features should be included and how they should be implemented for a given biological context. Previous reviews of the field have focused on specific modeling frameworks or on models for particular viral species. Here, we instead apply a scoping review approach to the literature of spatially structured viral dynamics models as a whole to provide an exhaustive update of the state of the field. Our analysis is structured along two axes, methodology and viral species, in order to examine the breadth of techniques used and the requirements of different biological applications. We then discuss the contributions of mathematical and computational modeling to our understanding of key spatially structured aspects of viral dynamics and suggest key themes for future model development to improve robustness and biological utility.
期刊介绍:
Microbiology and Molecular Biology Reviews (MMBR), a journal that explores the significance and interrelationships of recent discoveries in various microbiology fields, publishes review articles that help both specialists and nonspecialists understand and apply the latest findings in their own research. MMBR covers a wide range of topics in microbiology, including microbial ecology, evolution, parasitology, biotechnology, and immunology. The journal caters to scientists with diverse interests in all areas of microbial science and encompasses viruses, bacteria, archaea, fungi, unicellular eukaryotes, and microbial parasites. MMBR primarily publishes authoritative and critical reviews that push the boundaries of knowledge, appealing to both specialists and generalists. The journal often includes descriptive figures and tables to enhance understanding. Indexed/Abstracted in various databases such as Agricola, BIOSIS Previews, CAB Abstracts, Cambridge Scientific Abstracts, Chemical Abstracts Service, Current Contents- Life Sciences, EMBASE, Food Science and Technology Abstracts, Illustrata, MEDLINE, Science Citation Index Expanded (Web of Science), Summon, and Scopus, among others.