Mingyue Ren, Mengmeng Sun, Bingxue Zhang, Minghao Peng, Guihua Song
{"title":"Mechanism of action of M-XQLD treatment for asthma: role of STARD13 in Th17 suppression.","authors":"Mingyue Ren, Mengmeng Sun, Bingxue Zhang, Minghao Peng, Guihua Song","doi":"10.1007/s00011-025-02094-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Xiaoqinglong Decoction (XQLD) is a traditional oriental medicine. Modified- Xiaoqinglong Decoction (M-XQLD) was established by adding astragalus membranaceus and codonopsis pilosula on the basis of XQLD. M-XQLD has been shown to be effective in therapying asthma in clinical trials, but the mechanism of M-XQLD in asthma is currently unknown.</p><p><strong>Methods: </strong>Mice were sensitized by ovalbumin (OVA) to induce asthma. M-XQLD were administered by oral gavage. Label-free proteomics was conducted to identify the downstream target of M-XQLD. Histopathological assessment, multiple cytokine examination in bronchoalveolar lavage fluid (BALF) were conducted. In vitro, we isolated Naïve CD4 + T cells for analysis.</p><p><strong>Results: </strong>OVA stimulation decreased the expression of StAR Related Lipid Transfer Domain Containing 13 (STARD13), while M-XQLD treatment increased it. STARD13 overexpression reduced the inflammatory cell infiltration and goblet cells. STARD13 overexpression reduced the levels of OVA-specific IgE, IL-4, and IL-5 in serum and BALF. STARD13 overexpression inhibited the expression of IL-1β, IL-17A, and IL-22, and reduced Th17 differentiation. STARD13 overexpression inhibited the RhoA/ROCK2, while knockdown of STARD13 resulted in continuous activation of RhoA. Furthermore, STARD13 overexpression decreased p38 phosphorylation level. SB203580 treatment further inhibited the RORC expression and p38 phosphorylation. More importantly, the therapeutic efficacy of M-XQLD in OVA-induced mice was significantly reduced by STARD13 knockdown.</p><p><strong>Conclusions: </strong>This study revealed that M-XQLD targets to STARD13, and highlighted that STARD13 alleviated asthma by reducing Th17 differentiation via inhibiting the RhoA/ROCK2/p38 signaling.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":"74 1","pages":"129"},"PeriodicalIF":5.4000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00011-025-02094-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Xiaoqinglong Decoction (XQLD) is a traditional oriental medicine. Modified- Xiaoqinglong Decoction (M-XQLD) was established by adding astragalus membranaceus and codonopsis pilosula on the basis of XQLD. M-XQLD has been shown to be effective in therapying asthma in clinical trials, but the mechanism of M-XQLD in asthma is currently unknown.
Methods: Mice were sensitized by ovalbumin (OVA) to induce asthma. M-XQLD were administered by oral gavage. Label-free proteomics was conducted to identify the downstream target of M-XQLD. Histopathological assessment, multiple cytokine examination in bronchoalveolar lavage fluid (BALF) were conducted. In vitro, we isolated Naïve CD4 + T cells for analysis.
Results: OVA stimulation decreased the expression of StAR Related Lipid Transfer Domain Containing 13 (STARD13), while M-XQLD treatment increased it. STARD13 overexpression reduced the inflammatory cell infiltration and goblet cells. STARD13 overexpression reduced the levels of OVA-specific IgE, IL-4, and IL-5 in serum and BALF. STARD13 overexpression inhibited the expression of IL-1β, IL-17A, and IL-22, and reduced Th17 differentiation. STARD13 overexpression inhibited the RhoA/ROCK2, while knockdown of STARD13 resulted in continuous activation of RhoA. Furthermore, STARD13 overexpression decreased p38 phosphorylation level. SB203580 treatment further inhibited the RORC expression and p38 phosphorylation. More importantly, the therapeutic efficacy of M-XQLD in OVA-induced mice was significantly reduced by STARD13 knockdown.
Conclusions: This study revealed that M-XQLD targets to STARD13, and highlighted that STARD13 alleviated asthma by reducing Th17 differentiation via inhibiting the RhoA/ROCK2/p38 signaling.
期刊介绍:
Inflammation Research (IR) publishes peer-reviewed papers on all aspects of inflammation and related fields including histopathology, immunological mechanisms, gene expression, mediators, experimental models, clinical investigations and the effect of drugs. Related fields are broadly defined and include for instance, allergy and asthma, shock, pain, joint damage, skin disease as well as clinical trials of relevant drugs.