Propofol Inhibits Lung Cancer Glycolysis by Influencing the Deubiquitination Modification of TPI1 Regulated by USP5.

IF 1.6 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yan Wang, Hui Zhou, Wei Guo, Jiashi Xu, Chenghao Miao
{"title":"Propofol Inhibits Lung Cancer Glycolysis by Influencing the Deubiquitination Modification of TPI1 Regulated by USP5.","authors":"Yan Wang, Hui Zhou, Wei Guo, Jiashi Xu, Chenghao Miao","doi":"10.1007/s10528-025-11243-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Lung cancer is a malignant tumor of the bronchial mucosa or gland, the morbidity and mortality increase rapidly, and it is a great threat to human health and life. Propofol is a short-acting intravenous anesthetic, and its effect on lung cancer has been studied, but the mechanism is not thorough.</p><p><strong>Methods: </strong>The 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU) staining, flow cytometry, and transwell assays were applied to assess the viability, proliferation, apoptosis, and invasion, respectively. The glycolytic analysis was performed using the corresponding kits. The gene expression was evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot. The interaction between genes was obtained from the STRING database or ubiquitination analysis. The xenograft tumor mouse models were established to verify the effects of propofol in vivo, and IHC was adopted to detect the gene expression in vivo.</p><p><strong>Results: </strong>In this study, we found that propofol impeded lung cancer progression and glycolysis. Additionally, propofol curbed the triosephosphate isomerase 1 (TPI1) protein and increased TPI1 ubiquitination modification, meanwhile, propofol exerted inhibitory functions in lung cancer through TPI1. Besides, the protein stability and ubiquitination modification of TPI1 were mediated by ubiquitin-specific peptidase 5 (USP5), and USP5 expedited the progression and glycolysis of lung cancer via TPI1. In the meantime, propofol modulated USP5-regulated functions in lung cancer. In vivo, propofol-inhibited tumor growth by regulating USP5-mediated TPI1.</p><p><strong>Conclusion: </strong>This study presents propofol/USP5/TPI1 curbing glycolysis metabolism and tumor growth in lung cancer, indicating that propofol-mediated ubiquitination of the target gene may be a new therapeutic target for lung cancer.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-025-11243-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Lung cancer is a malignant tumor of the bronchial mucosa or gland, the morbidity and mortality increase rapidly, and it is a great threat to human health and life. Propofol is a short-acting intravenous anesthetic, and its effect on lung cancer has been studied, but the mechanism is not thorough.

Methods: The 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU) staining, flow cytometry, and transwell assays were applied to assess the viability, proliferation, apoptosis, and invasion, respectively. The glycolytic analysis was performed using the corresponding kits. The gene expression was evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot. The interaction between genes was obtained from the STRING database or ubiquitination analysis. The xenograft tumor mouse models were established to verify the effects of propofol in vivo, and IHC was adopted to detect the gene expression in vivo.

Results: In this study, we found that propofol impeded lung cancer progression and glycolysis. Additionally, propofol curbed the triosephosphate isomerase 1 (TPI1) protein and increased TPI1 ubiquitination modification, meanwhile, propofol exerted inhibitory functions in lung cancer through TPI1. Besides, the protein stability and ubiquitination modification of TPI1 were mediated by ubiquitin-specific peptidase 5 (USP5), and USP5 expedited the progression and glycolysis of lung cancer via TPI1. In the meantime, propofol modulated USP5-regulated functions in lung cancer. In vivo, propofol-inhibited tumor growth by regulating USP5-mediated TPI1.

Conclusion: This study presents propofol/USP5/TPI1 curbing glycolysis metabolism and tumor growth in lung cancer, indicating that propofol-mediated ubiquitination of the target gene may be a new therapeutic target for lung cancer.

异丙酚通过影响USP5调控的TPI1去泛素化修饰抑制肺癌糖酵解。
背景:肺癌是支气管粘膜或腺体的恶性肿瘤,发病率和死亡率迅速上升,严重威胁着人类的健康和生命。异丙酚是一种短效静脉麻醉药,其对肺癌的作用已有研究,但其作用机制尚不彻底。方法:采用3-(4,5)-二甲基噻吩偶氮(-z-y1)-3,5-二苯基四氮唑胺(MTT)染色、5-乙基-2'-脱氧尿苷(EdU)染色、流式细胞术和transwell法分别检测细胞活力、增殖、凋亡和侵袭。采用相应试剂盒进行糖酵解分析。采用定量反转录聚合酶链反应(qRT-PCR)和western blot检测基因表达。基因间的相互作用从STRING数据库或泛素化分析中获得。建立异种移植瘤小鼠模型,验证异丙酚在体内的作用,并采用免疫组化法检测基因在体内的表达。结果:在本研究中,我们发现异丙酚阻碍肺癌进展和糖酵解。此外,异丙酚抑制三磷酸异构酶1 (TPI1)蛋白,增加TPI1泛素化修饰,同时异丙酚通过TPI1在肺癌中发挥抑制作用。此外,TPI1的蛋白稳定性和泛素化修饰是由泛素特异性肽酶5 (USP5)介导的,USP5通过TPI1促进肺癌的进展和糖酵解。同时,异丙酚调节了usp5在肺癌中的调节功能。在体内,异丙酚通过调节usp5介导的TPI1抑制肿瘤生长。结论:本研究发现异丙酚/USP5/TPI1在肺癌中抑制糖酵解代谢和肿瘤生长,提示异丙酚介导的靶基因泛素化可能是肺癌新的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信