Cancer metabolism is a field focused on the unique alterations in metabolic pathways that occur in cancer cells, distinguishing them from the metabolic processes in normal cells.
An extensive review of the current literature on the metabolic adaptation of cancer cells was carried out in the current study.
The rapidly proliferating cells require high levels of molecules, such as glucose, amino acids, lipids, and nucleotides, along with increased energy demand (ATP). These requirements are met through alterations in the processes involving glucose, amino acid, lipid, and nucleotide metabolism. Modifications in glucose metabolism in cancer cells involve changes in glucose uptake, glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. Similarly, alterations in amino acid metabolism in cancer cells relate to upregulated amino acid transport and glutaminolysis. Cancer cells also have increased lipid intake from the extracellular microenvironment, upregulated lipogenesis, and enhanced lipid storage and mobilization from intracellular lipid droplets. These rapidly proliferating cells also achieve their increased demand for nucleotides by changing the expression of enzymes in the salvage and de novo nucleotide pathways. Consequently, these metabolic processes are targets for developing cancer therapeutics. However, it is important to note that the metabolic changes in cancer cells can also contribute to resistance against various cancer therapies.
This review will explore the various ways in which cancer cells reprogram metabolic processes to sustain rapid proliferation and survival. The information presented in this report could help in the therapeutics designed to target them, and the challenges of cancer drug resistance arising from these metabolic adaptations.