Bicontinuous Phase Network Formed by Anti-Plasticization Enhances Energy Storage Performance in Polyetherimide Dielectric Film.

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xin Li, Le Zhou, Yao Xiao, Erxiang Xu, Taoyuan Yu, Mufeng Zhang, Minzheng Yang, Weibin Ren, Penghao Hu, Yang Shen
{"title":"Bicontinuous Phase Network Formed by Anti-Plasticization Enhances Energy Storage Performance in Polyetherimide Dielectric Film.","authors":"Xin Li, Le Zhou, Yao Xiao, Erxiang Xu, Taoyuan Yu, Mufeng Zhang, Minzheng Yang, Weibin Ren, Penghao Hu, Yang Shen","doi":"10.1002/advs.202512343","DOIUrl":null,"url":null,"abstract":"<p><p>Polymer dielectrics display high breakdown strength (E<sub>b</sub>) and larger power density, rendering them an indispensable component in electronic energy storage applications. Nevertheless, the discharged energy density (U<sub>d</sub>) of polymer dielectrics is limited by relatively low dielectric constant (ε<sub>r</sub>) and sharply decreases in E<sub>b</sub> at elevated temperatures. The simultaneous improvement in both E<sub>b</sub> and ε<sub>r</sub> is highly desired, but the inverted relationship requires urgent resolution. Herein, the study introduces several plasticizers with low content into polyetherimide (PEI) matrix to fabricate composites. The formation of a bicontinuous phase network in polymer matrix is achieved through anti-plasticization. Owing to the discrepancy in polarizability, the network can achieve an electric field redistribution and interface polarization. It is composed of a dielectric phase (bear a lower electric field) and an insulation phase (bear a higher electric field), resulting in a concomitant enhancement on both ε<sub>r</sub> and E<sub>b</sub>. A relatively high U<sub>d</sub> of 4.88 J cm<sup>-3</sup> accompanied by η = 90% and charge-discharge cycle stability up to 10<sup>5</sup> cycles at 150 °C are achieved in the composite content with 3 wt.% of butylsuccinic anhydride. This work presents a promising strategy for decoupling the inverse relationship and fabricating applicable high-temperature polymer dielectrics through phase structure modulation.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e12343"},"PeriodicalIF":14.1000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202512343","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer dielectrics display high breakdown strength (Eb) and larger power density, rendering them an indispensable component in electronic energy storage applications. Nevertheless, the discharged energy density (Ud) of polymer dielectrics is limited by relatively low dielectric constant (εr) and sharply decreases in Eb at elevated temperatures. The simultaneous improvement in both Eb and εr is highly desired, but the inverted relationship requires urgent resolution. Herein, the study introduces several plasticizers with low content into polyetherimide (PEI) matrix to fabricate composites. The formation of a bicontinuous phase network in polymer matrix is achieved through anti-plasticization. Owing to the discrepancy in polarizability, the network can achieve an electric field redistribution and interface polarization. It is composed of a dielectric phase (bear a lower electric field) and an insulation phase (bear a higher electric field), resulting in a concomitant enhancement on both εr and Eb. A relatively high Ud of 4.88 J cm-3 accompanied by η = 90% and charge-discharge cycle stability up to 105 cycles at 150 °C are achieved in the composite content with 3 wt.% of butylsuccinic anhydride. This work presents a promising strategy for decoupling the inverse relationship and fabricating applicable high-temperature polymer dielectrics through phase structure modulation.

抗塑化形成的双连续相网络提高了聚醚酰亚胺介电膜的储能性能。
聚合物电介质具有高击穿强度(Eb)和较大的功率密度,是电子储能应用中不可缺少的元件。然而,聚合物电介质的放电能量密度(Ud)受到相对较低的介电常数(εr)的限制,并在高温下急剧下降。我们非常希望Eb和εr同时得到改善,但这种反向关系亟需解决。本研究将几种低含量增塑剂引入聚醚酰亚胺(PEI)基体中制备复合材料。通过抗塑化,在聚合物基体中形成双连续相网络。由于极化率的差异,网络可以实现电场重分布和界面极化。它由介电相(承受较低的电场)和绝缘相(承受较高的电场)组成,导致εr和Eb同时增强。当丁基丁二酸酐含量为3 wt.%时,复合材料的Ud值为4.88 J cm-3, η值为90%,在150℃下可达到105次充放电循环稳定性。这项工作提出了一种很有前途的策略来解耦逆关系,并通过相位结构调制制造适用的高温聚合物电介质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信