Mechanistic Study of Water Transport in Anion-Exchange Membranes and its Influence on Ionic Conductivity and Fuel Cell Operation.

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-09-15 DOI:10.1002/cssc.202501604
Gilles De Moor, Nicolas Charvin, Cristina Iojoiu, Emilie Planes
{"title":"Mechanistic Study of Water Transport in Anion-Exchange Membranes and its Influence on Ionic Conductivity and Fuel Cell Operation.","authors":"Gilles De Moor, Nicolas Charvin, Cristina Iojoiu, Emilie Planes","doi":"10.1002/cssc.202501604","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding water transport in anion-exchange membranes (AEMs) is critical to improving their ionic conductivity and operational stability in fuel cell environments. This study investigates the mechanisms governing water uptake and hydroxide ion conduction in two commercial AEMs-FAA-3-50 and A17-featuring distinct polymer backbones and ionic functional groups. After conversion to the hydroxide (OH<sup>-</sup>) form, membranes are characterized using gravimetric water vapor sorption, infrared spectroscopy, thickness variation measurements, and conductivity testing under controlled humidity. Results reveal that the chemical nature and spatial accessibility of the ionic group play a central role in modulating hydration, OH<sup>-</sup> mobility, and membrane performance. The FAA-3-50 membrane, with a rigid diazabicycle (DABCO)-based group, exhibits limited water uptake and pronounced conductivity hysteresis. In contrast, the A17 membrane, incorporating a more flexible piperidinium group, demonstrates enhanced hydration, lower hysteresis, and better retention of ionic conductivity under varying humidity. The findings underscore the impact of water-ionomer interactions on membrane dimensional stability and conduction mechanisms. Ultimately, the study provides insights into designing advanced AEMs through tailored ionic functionalities and controlled water management, essential for high-performance and durable AEM fuel cells, particularly under low-humidity or dynamically fluctuating conditions.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501604"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501604","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding water transport in anion-exchange membranes (AEMs) is critical to improving their ionic conductivity and operational stability in fuel cell environments. This study investigates the mechanisms governing water uptake and hydroxide ion conduction in two commercial AEMs-FAA-3-50 and A17-featuring distinct polymer backbones and ionic functional groups. After conversion to the hydroxide (OH-) form, membranes are characterized using gravimetric water vapor sorption, infrared spectroscopy, thickness variation measurements, and conductivity testing under controlled humidity. Results reveal that the chemical nature and spatial accessibility of the ionic group play a central role in modulating hydration, OH- mobility, and membrane performance. The FAA-3-50 membrane, with a rigid diazabicycle (DABCO)-based group, exhibits limited water uptake and pronounced conductivity hysteresis. In contrast, the A17 membrane, incorporating a more flexible piperidinium group, demonstrates enhanced hydration, lower hysteresis, and better retention of ionic conductivity under varying humidity. The findings underscore the impact of water-ionomer interactions on membrane dimensional stability and conduction mechanisms. Ultimately, the study provides insights into designing advanced AEMs through tailored ionic functionalities and controlled water management, essential for high-performance and durable AEM fuel cells, particularly under low-humidity or dynamically fluctuating conditions.

阴离子交换膜中水传输的机理研究及其对离子电导率和燃料电池运行的影响。
了解阴离子交换膜(AEMs)中的水传输对于提高其离子电导率和燃料电池环境下的运行稳定性至关重要。本研究探讨了两种具有不同聚合物骨架和离子官能团的商用aem - fa -3-50和a17的吸水和氢氧根离子传导机制。在转化为氢氧化物(OH-)形式后,使用重量水蒸气吸收,红外光谱,厚度变化测量和控制湿度下的电导率测试来表征膜。结果表明,离子基的化学性质和空间可及性在调节水合作用、OH-迁移率和膜性能方面起着核心作用。FAA-3-50膜,具有刚性重氮双环(DABCO)基,表现出有限的吸水和明显的电导率滞后。相比之下,含有更灵活的哌啶基团的A17膜在不同湿度下表现出更强的水化作用、更低的迟滞和更好的离子电导率保持。这些发现强调了水-离聚体相互作用对膜尺寸稳定性和传导机制的影响。最终,该研究为通过定制离子功能和控制水管理来设计先进的AEM提供了见解,这对于高性能和耐用的AEM燃料电池至关重要,特别是在低湿度或动态波动条件下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信