Multi-Millennial Genetic Resilience of Baltic Diatom Populations Disturbed in the Past Centuries

IF 12 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Alexandra Schmidt, Sarah Bolius, Anna Chagas, Juliane Romahn, Jérôme Kaiser, Helge W. Arz, Miklós Bálint, Anke Kremp, Laura S. Epp
{"title":"Multi-Millennial Genetic Resilience of Baltic Diatom Populations Disturbed in the Past Centuries","authors":"Alexandra Schmidt,&nbsp;Sarah Bolius,&nbsp;Anna Chagas,&nbsp;Juliane Romahn,&nbsp;Jérôme Kaiser,&nbsp;Helge W. Arz,&nbsp;Miklós Bálint,&nbsp;Anke Kremp,&nbsp;Laura S. Epp","doi":"10.1111/gcb.70467","DOIUrl":null,"url":null,"abstract":"<p>Little is known about the genetic diversity and stability of natural populations over millennial time scales, although the current biodiversity crisis calls for heightened understanding. Marine phytoplankton, the primary producers forming the basis of food webs in the oceans, play a pivotal role in maintaining marine ecosystems health and serve as indicators of environmental change. This study examines the genetic diversity and shifts in allelic composition in the diatom species <i>Skeletonema marinoi</i> over ~8000 years in the Baltic Sea by analyzing chloroplast and mitochondrial genomes. Sedimentary ancient DNA (sedaDNA) demonstrates the stability and resilience of genetic composition and diversity of this species across millennia in the context of major climate events. Accelerated change in allelic composition is observed from historical periods onwards, coinciding with times of intensifying human activity, like the Roman Empire, the Viking Age, and the Hanseatic Age, suggesting that anthropogenic stressors have profoundly impacted this species for the last two millennia. The data indicate a very high natural stability and resilience of the genomic composition of the species and underscore the importance of uncovering genomic disruptions caused by human impact on organisms, even those not directly exploited, to better predict and manage future biodiversity.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 9","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12439084/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70467","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Little is known about the genetic diversity and stability of natural populations over millennial time scales, although the current biodiversity crisis calls for heightened understanding. Marine phytoplankton, the primary producers forming the basis of food webs in the oceans, play a pivotal role in maintaining marine ecosystems health and serve as indicators of environmental change. This study examines the genetic diversity and shifts in allelic composition in the diatom species Skeletonema marinoi over ~8000 years in the Baltic Sea by analyzing chloroplast and mitochondrial genomes. Sedimentary ancient DNA (sedaDNA) demonstrates the stability and resilience of genetic composition and diversity of this species across millennia in the context of major climate events. Accelerated change in allelic composition is observed from historical periods onwards, coinciding with times of intensifying human activity, like the Roman Empire, the Viking Age, and the Hanseatic Age, suggesting that anthropogenic stressors have profoundly impacted this species for the last two millennia. The data indicate a very high natural stability and resilience of the genomic composition of the species and underscore the importance of uncovering genomic disruptions caused by human impact on organisms, even those not directly exploited, to better predict and manage future biodiversity.

Abstract Image

波罗的海硅藻种群在过去几个世纪受到干扰的千年遗传恢复力。
尽管当前的生物多样性危机需要加强了解,但人们对自然种群在千年时间尺度上的遗传多样性和稳定性知之甚少。海洋浮游植物是构成海洋食物网基础的主要生产者,在维持海洋生态系统健康方面发挥着关键作用,是环境变化的指标。本研究通过分析波罗的海海水藻的叶绿体和线粒体基因组,研究了近8000年来海水藻的遗传多样性和等位基因组成的变化。沉积古DNA (sedaDNA)显示了该物种在重大气候事件背景下数千年来遗传组成和多样性的稳定性和弹性。从历史时期开始,观察到等位基因组成的加速变化,与人类活动加剧的时期相吻合,如罗马帝国、维京时代和汉萨时代,这表明在过去的两千年里,人为的压力因素对这个物种产生了深刻的影响。这些数据表明,该物种的基因组组成具有非常高的自然稳定性和复原力,并强调了揭示人类对生物(即使是那些未直接利用的生物)的影响所造成的基因组破坏的重要性,以便更好地预测和管理未来的生物多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信