Chemical Tuning of the Electronic Structure in Diruthenium Compounds

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Almudena Inchausti, , , Rosa Mollfulleda, , , Marcel Swart, , , Josefina Perles, , , Santiago Herrero, , , Valentín G. Baonza, , , Mercedes Taravillo, , and , Álvaro Lobato*, 
{"title":"Chemical Tuning of the Electronic Structure in Diruthenium Compounds","authors":"Almudena Inchausti,&nbsp;, ,&nbsp;Rosa Mollfulleda,&nbsp;, ,&nbsp;Marcel Swart,&nbsp;, ,&nbsp;Josefina Perles,&nbsp;, ,&nbsp;Santiago Herrero,&nbsp;, ,&nbsp;Valentín G. Baonza,&nbsp;, ,&nbsp;Mercedes Taravillo,&nbsp;, and ,&nbsp;Álvaro Lobato*,&nbsp;","doi":"10.1021/acs.jpclett.5c02176","DOIUrl":null,"url":null,"abstract":"<p >This study explores how the electronic structure of mixed valence diruthenium paddlewheel complexes can be controlled through chemical modifications. These compounds exhibit a unique electronic configuration due to the quasidegeneracy of π* and δ* orbitals, making them very attractive for applications in electronic, magnetic, catalytic, and bioinorganic systems. Through synthesis, electrochemical and spectroscopic analyses, and density functional theory (DFT) calculations, we have investigated the impact of axial ligand interactions, equatorial ligand electronic effects, and structural distortions on the molecular orbital diagram, paying special attention to how the δ*-π* gap is modified. In contrast to prior assumptions, our results show that variations in equatorial ligand donor strength shift orbital energies in parallel and, therefore, the observed UV/vis trends with Hammett-type substituents are primarily due to solvent-dependent conformational changes. Overall, our findings highlight the role of axial Ru–Cl interactions and torsion angle modifications in stabilizing spin-admixed or low-spin states, offering new pathways for controlling electronic configurations in bimetallic complexes.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 38","pages":"10000–10008"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c02176","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores how the electronic structure of mixed valence diruthenium paddlewheel complexes can be controlled through chemical modifications. These compounds exhibit a unique electronic configuration due to the quasidegeneracy of π* and δ* orbitals, making them very attractive for applications in electronic, magnetic, catalytic, and bioinorganic systems. Through synthesis, electrochemical and spectroscopic analyses, and density functional theory (DFT) calculations, we have investigated the impact of axial ligand interactions, equatorial ligand electronic effects, and structural distortions on the molecular orbital diagram, paying special attention to how the δ*-π* gap is modified. In contrast to prior assumptions, our results show that variations in equatorial ligand donor strength shift orbital energies in parallel and, therefore, the observed UV/vis trends with Hammett-type substituents are primarily due to solvent-dependent conformational changes. Overall, our findings highlight the role of axial Ru–Cl interactions and torsion angle modifications in stabilizing spin-admixed or low-spin states, offering new pathways for controlling electronic configurations in bimetallic complexes.

Abstract Image

Abstract Image

二钌化合物中电子结构的化学调谐
本研究探讨了如何通过化学修饰来控制混合价态二钌桨轮配合物的电子结构。由于π*和δ*轨道的准生成,这些化合物具有独特的电子构型,这使得它们在电子、磁性、催化和生物无机系统中具有非常好的应用前景。通过合成、电化学和光谱分析以及密度泛函理论(DFT)计算,我们研究了轴向配体相互作用、赤道配体电子效应和结构畸变对分子轨道图的影响,特别关注了δ*-π*间隙的改变。与先前的假设相反,我们的研究结果表明,赤道配体给体强度的变化平行地改变了轨道能量,因此,观察到的哈密特型取代基的UV/vis趋势主要是由于溶剂依赖的构象变化。总的来说,我们的发现强调了轴向Ru-Cl相互作用和扭转角改变在稳定自旋混合或低自旋态中的作用,为控制双金属配合物的电子构型提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信